Literatura académica sobre el tema "Membrane crystallization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Membrane crystallization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Membrane crystallization"
Li, Xue, Jun Pan, Francesca Macedonio, Claudia Ursino, Mauro Carraro, Marcella Bonchio, Enrico Drioli, Alberto Figoli, Zhaohui Wang y Zhaoliang Cui. "Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization". Polymers 14, n.º 24 (12 de diciembre de 2022): 5439. http://dx.doi.org/10.3390/polym14245439.
Texto completoTsai, Jheng-Han, Maria Luisa Perrotta, Annarosa Gugliuzza, Francesca Macedonio, Lidietta Giorno, Enrico Drioli, Kuo-Lun Tung y Elena Tocci. "Membrane-Assisted Crystallization: A Molecular View of NaCl Nucleation and Growth". Applied Sciences 8, n.º 11 (2 de noviembre de 2018): 2145. http://dx.doi.org/10.3390/app8112145.
Texto completoRuiz Salmón, I. y P. Luis. "Membrane crystallization via membrane distillation". Chemical Engineering and Processing - Process Intensification 123 (enero de 2018): 258–71. http://dx.doi.org/10.1016/j.cep.2017.11.017.
Texto completoCherezov, Vadim y Martin Caffrey. "Picolitre-scale crystallization of membrane proteins". Journal of Applied Crystallography 39, n.º 4 (15 de julio de 2006): 604–6. http://dx.doi.org/10.1107/s0021889806022953.
Texto completoFrappa, Mirko, Francesca Macedonio y Enrico Drioli. "Membrane-assisted crystallization". Journal of Resource Recovery 1, January - December (1 de enero de 2023): 1018. http://dx.doi.org/10.61186/jrr.2308.1018.
Texto completoCaffrey, Martin. "Membrane protein crystallization". Journal of Structural Biology 142, n.º 1 (abril de 2003): 108–32. http://dx.doi.org/10.1016/s1047-8477(03)00043-1.
Texto completoFrappa, Mirko, Francesca Macedonio, Annarosa Gugliuzza, Wanqin Jin y Enrico Drioli. "Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process". Membranes 11, n.º 5 (21 de abril de 2021): 302. http://dx.doi.org/10.3390/membranes11050302.
Texto completoNishino, Yuri y Atsuo Miyazawa. "Two-dimensional Crystallization of Membrane Proteins". MEMBRANE 32, n.º 1 (2007): 25–31. http://dx.doi.org/10.5360/membrane.32.25.
Texto completoBolla, Jani Reddy, Chih-Chia Su y Edward W. Yu. "Biomolecular membrane protein crystallization". Philosophical Magazine 92, n.º 19-21 (julio de 2012): 2648–61. http://dx.doi.org/10.1080/14786435.2012.670734.
Texto completoSowadski, Janusz M. "Crystallization of membrane proteins". Current Opinion in Structural Biology 4, n.º 5 (octubre de 1994): 761–64. http://dx.doi.org/10.1016/s0959-440x(94)90176-7.
Texto completoTesis sobre el tema "Membrane crystallization"
Kulkarni, Chandrashekhar V. "In-Cubo Crystallization of Membrane Proteins". Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508495.
Texto completoSvang-Ariyaskul, Apichit. "Chiral separation using hybrid of preferential crystallization moderated by a membrane barrier". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33909.
Texto completoLiu, Wei. "Membrane protein crystallization in the lipid cubic phase testing hypotheses relating to reconstitution /". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196274127.
Texto completoKalakech, Carla. "Membrane crystallization by pervaporation for paracetamol production and polymorphism control". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10300.
Texto completoCrystallization is a crucial unit operation in process engineering, widely utilized across industries such as chemical, pharmaceutical, and electronics. Despite its importance, current crystallization methods encounter various limitations, impacting the final product quality, production consistency, and the control over the polymorphic form. Recently, membrane processes have emerged as a promising approach to enhance crystallization control, particularly pervaporation, which employs a dense selective membrane. Applied to crystallization, this method allows for the removal of the solvent from a solvent/antisolvent mixture, creating the supersaturation needed for crystallization initiation. The primary goal of this PhD work is to control paracetamol polymorphism through the selective crystallization and stabilization of the metastable form II using membrane crystallization by pervaporation. Paracetamol form II is favored for its high solubility and compressibility compared to the most stable form I, but its instability during crystallization, particularly its rapid solvent-mediated phase transformation (SMPT) to form I, poses significant challenges. To do so, the initial investigation involved producing form II in small quantities through heating and cooling cycles using differential scanning calorimetry (DSC), followed by its characterization using numerous analytical techniques. An offline Fourier transform near infrared spectroscopy (FT-NIR) polymorphism prediction model supported by a chemometric technique like Partial Least Squares Discriminant Analysis (PLS-DA) was developed and validated during seeded batch cooling crystallization. The selective crystallization and stabilization of form II in seeded batch cooling crystallization was optimized by controlling the supersaturation level and the operational temperature. Results demonstrated that maintaining a low temperature (5-10°C) and low supersaturation levels (β = 1.25) extended form II stability for up to 30 min. However, increasing the seed mass did not improve stability, as mechanical stress during seed recuperation generated form I impurities. The application of membrane crystallization by pervaporation for paracetamol polymorphism control revealed that form I crystallized during unseeded operations at different permeation rates and membrane surface to feed volume S/Vc ratios whereas form II stability was around 15 min in supersaturated solution and the SMPT was slowed to at least 49 min during seeded membrane crystallization operations at a supersaturation level of βs=1.1, an operational temperature of 5°C and a seeding temperature of 7.4°C. However, when compared to conventional seeded batch cooling crystallization, form II stability was not improved suggesting a preference form I heterogeneous nucleation which accelerated form II SMPT. The stabilization of form II has been proven to be mainly dependent on the operational and seeding temperatures rather than the permeation rate. On the other hand, membrane crystallization by pervaporation exhibited higher crystallization yields than conventional batch cooling crystallization. The increase of the membrane surface to feed volume (S/Vc) ratio and the permeation rate led to a slight improvement in the antisolvent concentration of almost 5%, which did not affect paracetamol polymorphism but increased the crystallization yield to 43% with no noticeable membrane ageing and irreversible fouling detection for 13 membrane usages
Clogston, Jeffrey. "Applications of the lipidic cubic phase from controlled release and uptake to in meso crystallization of membrane proteins /". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1117564268.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xxii, 352 p.; also includes graphics. Includes bibliographical references (p. 346-352). Available online via OhioLINK's ETD Center
McGregor, Clare-Louise. "Development of lipopeptide detergents for the solubilization and crystallization of membrane proteins". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0019/MQ54093.pdf.
Texto completoJohnson, Jennifer Leigh. "The quest for a general co-crystallization strategy for macromolecules: lessons on the use of chaperones for membrane protein crystallization". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53886.
Texto completoLiu, Wei. "Membrane protein crystallization in the lipid cubic phase: testing hypotheses relating to reconsitution". The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1196274127.
Texto completoMisquitta, Yohann Reynold. "The rational design of monoacylglycerols for use as matrices for the crystallization of membrane proteins". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141940412.
Texto completoRodríguez, Banqueri Arturo. "A random approach to stabilize a membrane transport protein for crystallization studies / Un enfoque aleatorio para estabilizar un transportador de membrana para estudios de cristalización". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/109040.
Texto completoLa cristalografía de rayos X es, hoy en día, una de las técnicas más potentes para el estudio de las proteínas a nivel atómico. Desafortunadamente, la obtención de cristales de alta calidad de proteínas de membrana para la difracción de rayos X es un desafío debido a la naturaleza hidrofóbica de estas proteínas. La baja estabilidad en solución de estas proteínas y su tendencia a formar agregados son los mayores problemas durante los estudios de cristalización. Una de las estrategias más comunes para superar estos obstáculos consiste en trabajar con mutantes funcionales de estas proteínas. Se han publicado estudios sobre mutaciones en residuos clave en proteínas de membrana (normalmente dentro de los segmentos transmembrana) que conducen a un notable incremento de la estabilidad en solución, previa extracción de la membrana y solubilización en detergente. Además, una sola mutación puede estabilizar un confórmero específico de una proteína, disminuyendo su heterogeneidad en solución. A pesar de esto, predecir qué mutaciones van a mejorar la estabilidad de una proteína es prácticamente imposible. El principal objetivo de esta tesis es la construcción de un protocolo de alto rendimiento experimental con el objetivo de generar y caracterizar mutantes aleatorios de una proteína de membrana que presenten una estabilidad adecuada después de solubilizar la proteína en detergente y, por lo tanto, con mejores garantías de cristalizar. Para conseguir estos objetivos hemos combinado técnicas de mutaciones aleatorias con métodos de cribaje rápidos y sensibles. En este sentido, el uso de la proteína fluorescente verde (GFP) ha facilitado enormemente los estudios de expresión y purificación de proteínas de membrana. Con el objetivo de minimizar los efectos no deseados de la GFP, se creó y optimizó un ensayo basado en la complementación de la GFP (GFP split system) con un fin doble: seleccionar y caracterizar los componentes de la librería de mutantes aleatorios. Este protocolo se ha puesto a punto con SteT, un intercambiador de L-serina por L-treonina de Bacillus subtilis. SteT es un excelente modelo procariota (30% de identidad de aminoácidos) de la familia de transportadores de mamíferos de amino ácidos L (LAT). Mutaciones congénitas de algunos LATs son la causa directa de dos tipos de aminoacidurias. Además, un miembro de esta familia, LAT1, se sobreexpresa en células tumorales, aunque el papel fisiológico es aún desconocido. Desafortunadamente, SteT tiene una muy baja solubilidad junto a un gran inestabilidad en detergente, propiedades totalmente incompatibles con estudios de cristalización. Nuestros resultados indican que la mutagénesis aleatoria combinada con el ensayo basado en el “GFP split system”, es una estrategia excelente para aumentar la estabilidad de proteínas de membrana en estudios estructurales. Utilizando esta metodología hemos encontrado un mutante de SteT que actualmente está siendo cristalizado. Estos estudios serán clave para conocer mejor la estructura y el mecanismo de la familia de transportadores de mamífero LAT.
Libros sobre el tema "Membrane crystallization"
M, Bergfors Terese, ed. Protein crystallization. La Jolla, Calif: International University Line, 2008.
Buscar texto completoHartmut, Michel, ed. Crystallization of membrane proteins. Boca Raton: CRC Press, 1991.
Buscar texto completoMcGregor, Clare-Louise. Development of lipopeptide detergents for the solubilization and crystallization of membrane proteins. Ottawa: National Library of Canada, 2000.
Buscar texto completoSerysheva, Irina I. Structure and function of calcium release channels. London: Academic Press, 2010.
Buscar texto completoservice), ScienceDirect (Online, ed. Cryo-EM: Sample preparation and data collection. San Diego, Calif: Academic Press/Elsevier, 2010.
Buscar texto completoA, Ducruix y Giegé R, eds. Crystallization of nucleic acids and proteins: A practical approach. 2a ed. Oxford: Oxford University Press, 1999.
Buscar texto completoDeLucas, Larry. Membrane Protein Crystallization. Elsevier Science & Technology Books, 2009.
Buscar texto completoMichel, Hartmut. Crystallization of Membrane Proteins. Editado por Hartmut Michel. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071277.
Texto completoDrioli, E., Gianluca Di Profio y Efrem Curcio. Membrane-Assisted Crystallization Technology. World Scientific Publishing Co Pte Ltd, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Membrane crystallization"
Di Profio, Gianluca. "Protein Crystallization by Membrane Crystallization". En Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_836-1.
Texto completoCurcio, Efrem. "Membrane Crystallization (MCr)". En Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_826-1.
Texto completoDi Profio, Gianluca. "Antisolvent Membrane Crystallization". En Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_834-1.
Texto completoDi Profio, Gianluca. "Antisolvent Membrane Crystallization". En Encyclopedia of Membranes, 96–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_834.
Texto completoFrappa, M., F. Macedonio y E. Drioli. "Membrane Distillation, Membrane Crystallization, and Membrane Condenser". En Hollow Fiber Membrane Contactors, 253–70. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429398889-23.
Texto completoDi Profio, Gianluca. "Solvent Evaporation Membrane Crystallization". En Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_835-1.
Texto completoDi Profio, Gianluca. "Solvent Evaporation Membrane Crystallization". En Encyclopedia of Membranes, 1800–1801. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_835.
Texto completoMichel, Hartmut. "Crystallization of Membrane Proteins". En Techniques and New Developments in Photosynthesis Research, 11–15. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8571-4_2.
Texto completoMüller, Florian G. y C. Roy D. Lancaster. "Crystallization of Membrane Proteins". En Methods in Molecular Biology, 67–83. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-487-6_5.
Texto completoMichel, H. "Crystallization of membrane proteins". En International Tables for Crystallography, 94–99. Chester, England: International Union of Crystallography, 2006. http://dx.doi.org/10.1107/97809553602060000661.
Texto completoActas de conferencias sobre el tema "Membrane crystallization"
Caffrey, Martin. "Lipid Phase Behavior: Databases, Rational Design and Membrane Protein Crystallization". En ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192724.
Texto completoZheng, Y. F. y Weidong Chen. "Robot team forming of membrane proteins in crystallization". En IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1308030.
Texto completoGulied, Mona, Sifani Zavahir, Tasneem Elmakki, Hazim Qiblawey, Bassim Hameed y Dong Suk Han. "Membrane Distillation Crystallization Hybrid Process for Zero Liquid Discharge in QAFCO Plant". En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0010.
Texto completoSasaki, Minoru, Takashi Sasaki, Kazuhiro Hane y Hideo Miura. "Optically FlatMicromirror Designs Using Stretched Membrane with Crystallization-Induced Stress". En LEOS 2007. 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. IEEE, 2007. http://dx.doi.org/10.1109/leos.2007.4382604.
Texto completoHsin-Jui Wu, Tamara Basta, Mary Morphew, D. C. Rees, Michael H. B. Stowell y Y. C. Lee. "Microfluidic device for super-fast evaluation of membrane protein crystallization". En 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559687.
Texto completoSasaki, Minoru, Takashi Sasaki, Kazuhiro Hane y Hideo Miura. "Optically Flat Micromirror Using Stretched Membrane with Crystallization-Induced Stress". En 2007IEEE/LEOS International Conference on Optical MEMS and Nanophotonics. IEEE, 2007. http://dx.doi.org/10.1109/omems.2007.4373823.
Texto completoLackowska, Izabela, Brahim Benyahia y Marijana Dragosavac. "Comparative Investigation of Membrane Systems for Crystallization and Spherical Agglomeration". En The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12162.
Texto completoLackowska, Izabela, Brahim Benyahia y Marijana Dragosavac. "Comparative Investigation of Membrane Systems for Crystallization and Spherical Agglomeration". En The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12162.
Texto completoMuthusubramaniam, L., A. Peddi, Y. F. Zheng, V. Cherezov y M. Caffrey. "Automating crystallization of membrane proteins by robot with soft coordinate measuring". En IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1308028.
Texto completoMegasari, Kartini, Maulana Alfi Pradana y Noor Anis Kundari. "Application of Polyvinylidene Fluoride (PVDF) membrane in improving high salinity brine treatment using Membrane Distillation Crystallization (MDCR) method". En THE 8TH INTERNATIONAL CONFERENCE ON TECHNOLOGY AND VOCATIONAL TEACHERS 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212103.
Texto completo