Literatura académica sobre el tema "Metabolite set enrichment analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Metabolite set enrichment analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Metabolite set enrichment analysis"
Deng, Lingli, Lei Ma, Kian-Kai Cheng, Xiangnan Xu, Daniel Raftery y Jiyang Dong. "Sparse PLS-Based Method for Overlapping Metabolite Set Enrichment Analysis". Journal of Proteome Research 20, n.º 6 (18 de mayo de 2021): 3204–13. http://dx.doi.org/10.1021/acs.jproteome.1c00064.
Texto completoMartins, Raquel G., Luís G. Gonçalves, Nuno Cunha y Maria João Bugalho. "Metabolomic Urine Profile: Searching for New Biomarkers of SDHx-Associated Pheochromocytomas and Paragangliomas". Journal of Clinical Endocrinology & Metabolism 104, n.º 11 (23 de julio de 2019): 5467–77. http://dx.doi.org/10.1210/jc.2019-01101.
Texto completoChandler, Paulette D., Raji Balasubramanian, Nina Paynter, Franco Giulianini, Teresa Fung, Lesley F. Tinker, Linda Snetselaar et al. "Metabolic signatures associated with Western and Prudent dietary patterns in women". American Journal of Clinical Nutrition 112, n.º 2 (10 de junio de 2020): 268–83. http://dx.doi.org/10.1093/ajcn/nqaa131.
Texto completoFan, Sili, Muhammad Shahid, Peng Jin, Arash Asher y Jayoung Kim. "Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis". Metabolites 10, n.º 4 (24 de abril de 2020): 170. http://dx.doi.org/10.3390/metabo10040170.
Texto completoIsserlin, Ruth, Daniele Merico, Veronique Voisin y Gary D. Bader. "Enrichment Map – a Cytoscape app to visualize and explore OMICs pathway enrichment results". F1000Research 3 (1 de julio de 2014): 141. http://dx.doi.org/10.12688/f1000research.4536.1.
Texto completoMcLuskey, Karen, Joe Wandy, Isabel Vincent, Justin J. J. van der Hooft, Simon Rogers, Karl Burgess y Rónán Daly. "Ranking Metabolite Sets by Their Activity Levels". Metabolites 11, n.º 2 (11 de febrero de 2021): 103. http://dx.doi.org/10.3390/metabo11020103.
Texto completoLokhov, Petr G., Elena E. Balashova, Oxana P. Trifonova, Dmitry L. Maslov, Elena A. Ponomarenko y Alexander I. Archakov. "Mass Spectrometry-Based Metabolomics Analysis of Obese Patients’ Blood Plasma". International Journal of Molecular Sciences 21, n.º 2 (15 de enero de 2020): 568. http://dx.doi.org/10.3390/ijms21020568.
Texto completoTietz-Bogert, Pamela, Minsuk Kim, Angela Cheung, James Tabibian, Julie Heimbach, Charles Rosen, Madhumitha Nandakumar et al. "Metabolomic Profiling of Portal Blood and Bile Reveals Metabolic Signatures of Primary Sclerosing Cholangitis". International Journal of Molecular Sciences 19, n.º 10 (16 de octubre de 2018): 3188. http://dx.doi.org/10.3390/ijms19103188.
Texto completoPersicke, Marcus, Christian Rückert, Jens Plassmeier, Leonhardt Jonathan Stutz, Nikolas Kessler, Jörn Kalinowski, Alexander Goesmann y Heiko Neuweger. "MSEA: metabolite set enrichment analysis in the MeltDB metabolomics software platform: metabolic profiling of Corynebacterium glutamicum as an example". Metabolomics 8, n.º 2 (1 de mayo de 2011): 310–22. http://dx.doi.org/10.1007/s11306-011-0311-6.
Texto completoDwivedi, Prarambh SR, V. P. Rasal, Ekta Kotharkar, Shailaja Nare y Pukar Khanal. "Gene set enrichment analysis of PPAR-γ regulators from Murraya odorata Blanco". Journal of Diabetes & Metabolic Disorders 20, n.º 1 (17 de febrero de 2021): 369–75. http://dx.doi.org/10.1007/s40200-021-00754-x.
Texto completoTesis sobre el tema "Metabolite set enrichment analysis"
Ried, Janina S. "Phenotype set enrichment analysis". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-158079.
Texto completoPaszkowski-Rogacz, Maciej, Frank Buchholz, Mikolaj Slabicki y Maria Teresa Pisabarro. "PhenoFam-gene set enrichment analysis through protein structural information". BioMed Central, 2010. https://tud.qucosa.de/id/qucosa%3A28875.
Texto completoPaszkowski-Rogacz, Maciej, Frank Buchholz, Mikolaj Slabicki y Maria Teresa Pisabarro. "PhenoFam-gene set enrichment analysis through protein structural information". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-176848.
Texto completoLi, Wei. "Analyzing Gene Expression Data in Terms of Gene Sets: Gene Set Enrichment Analysis". Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/math_theses/79.
Texto completoKodysh, Yuliya. "Using co-expression to redefine functional gene sets for gene set enrichment analysis". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41661.
Texto completoIncludes bibliographical references (p. 89-90).
Manually curated gene sets related to a biological function often contain genes that are not tightly co-regulated transcriptionally. which obscures the evidence of coordinated differential expression of these gene sets in relevant experiments. To address this problem, we explored strategies to refine the manually curated subcollection of the Molecular Signatures Database (MSigDB) for use with Gene Set Enrichment Analysis (GSEA). We examined the manually curated gene sets in context of an atlas of gene expression of many normal human tissues. To refine gene sets, we clustered the genes in each set based on co-expression across the tissues to produce more tightly co-regulated children gene sets that are also likely more accurate representations of the biological process or processes described by the gene set. We evaluated the performance of the clustering algorithms by refining gene sets in the context of several published GSEA analyses and verifying that the children gene sets score higher with GSEA than do the parents. We created and annotated a new, refined version of a large portion of the manually curated component of MSigDB, which we hope will be a resource for the GSEA community.
by Yuliya Kodysh.
M.Eng.
Jadhav, Trishul. "Knowledge Based Gene Set analysis (KB-GSA) : A novel method for gene expression analysis". Thesis, University of Skövde, School of Life Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4352.
Texto completoMicroarray technology allows measurement of the expression levels of thousand of genes simultaneously. Several gene set analysis (GSA) methods are widely used for extracting useful information from microarrays, for example identifying differentially expressed pathways associated with a particular biological process or disease phenotype. Though GSA methods like Gene Set Enrichment Analysis (GSEA) are widely used for pathway analysis, these methods are solely based on statistics. Such methods can be awkward to use if knowledge of specific pathways involved in particular biological processes are the aim of the study. Here we present a novel method (Knowledge Based Gene Set Analysis: KB-GSA) which integrates knowledge about user-selected pathways that are known to be involved in specific biological processes. The method generates an easy to understand graphical visualization of the changes in expression of the genes, complemented with some common statistics about the pathway of particular interest.
Ried, Janina S. [Verfasser] y H. Erich [Akademischer Betreuer] Wichmann. "Phenotype set enrichment analysis : genome wide analysis of multiple phenotypes / Janina S. Ried. Betreuer: H.-Erich Wichmann". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1036836894/34.
Texto completoSARTOR, MAUREEN A. "TESTING FOR DIFFERENTIALLY EXPRESSED GENES AND KEY BIOLOGICAL CATEGORIES IN DNA MICROARRAY ANALYSIS". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1195656673.
Texto completoLu, Yingzhou. "Multi-omics Data Integration for Identifying Disease Specific Biological Pathways". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83467.
Texto completoMaster of Science
Hänzelmann, Sonja 1981. "Pathway-centric approaches to the analysis of high-throughput genomics data". Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/108337.
Texto completoEn l'última dècada, la biologia molecular ha evolucionat des d'una perspectiva reduccionista cap a una perspectiva a nivell de sistemes que intenta desxifrar les complexes interaccions entre els components cel•lulars. Amb l'aparició de les tecnologies d'alt rendiment actualment és possible interrogar genomes sencers amb una resolució sense precedents. La dimensió i la naturalesa desestructurada d'aquestes dades ha posat de manifest la necessitat de desenvolupar noves eines i metodologies per a convertir aquestes dades en coneixement biològic. Per contribuir a aquest repte hem explotat l'abundància de dades genòmiques procedents d'instruments d'alt rendiment i disponibles públicament, i hem desenvolupat mètodes bioinformàtics focalitzats en l'extracció d'informació a nivell de via molecular en comptes de fer-ho al nivell individual de cada gen. En primer lloc, hem desenvolupat GSVA (Gene Set Variation Analysis), un mètode que facilita l'organització i la condensació de perfils d'expressió dels gens en conjunts. GSVA possibilita anàlisis posteriors en termes de vies moleculars amb dades d'expressió gènica provinents de microarrays i RNA-seq. Aquest mètode estima la variació de les vies moleculars a través d'una població de mostres i permet la integració de fonts heterogènies de dades biològiques amb mesures d'expressió a nivell de via molecular. Per il•lustrar les característiques de GSVA, l'hem aplicat a diversos casos usant diferents tipus de dades i adreçant qüestions biològiques. GSVA està disponible com a paquet de programari lliure per R dins el projecte Bioconductor. En segon lloc, hem desenvolupat una estratègia centrada en vies moleculars basada en el genoma per reposicionar fàrmacs per la diabetis tipus 2 (T2D). Aquesta estratègia consisteix en dues fases: primer es construeix una xarxa reguladora que s'utilitza per identificar mòduls de regulació gènica que condueixen a la malaltia; després, a partir d'aquests mòduls es busquen compostos que els podrien afectar. La nostra estratègia ve motivada per l'observació que els gens que provoquen una malaltia tendeixen a agrupar-se, formant mòduls patogènics, i pel fet que podria caldre una actuació simultània sobre múltiples gens per assolir un efecte en el fenotipus de la malaltia. Per trobar compostos potencials, hem usat dades genòmiques exposades a compostos dipositades en bases de dades públiques. Hem recollit unes 20.000 mostres que han estat exposades a uns 1.800 compostos. L'expressió gènica es pot interpretar com un fenotip intermedi que reflecteix les vies moleculars desregulades subjacents a una malaltia. Per tant, considerem que els gens d'un mòdul patològic que responen, a nivell transcripcional, d'una manera similar a l'exposició del medicament tenen potencialment un efecte terapèutic. Hem aplicat aquesta estratègia a dades d'expressió gènica en illots pancreàtics humans corresponents a individus sans i diabètics, i hem identificat quatre compostos potencials (methimazole, pantoprazole, extracte de taronja amarga i torcetrapib) que podrien tenir un efecte positiu sobre la secreció de la insulina. Aquest és el primer cop que una xarxa reguladora d'illots pancreàtics humans s'ha utilitzat per reposicionar compostos per a T2D. En conclusió, aquesta tesi aporta dos enfocaments diferents en termes de vies moleculars a problemes bioinformàtics importants, com ho son el contrast de la funció biològica i el reposicionament de fàrmacs "in silico". Aquestes contribucions demostren el paper central de les anàlisis basades en vies moleculars a l'hora d'interpretar dades genòmiques procedents d'instruments d'alt rendiment.
Capítulos de libros sobre el tema "Metabolite set enrichment analysis"
Gentleman, R., M. Morgan y W. Huber. "Gene Set Enrichment Analysis". En Bioconductor Case Studies, 193–205. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77240-0_13.
Texto completoTilford, Charles A. y Nathan O. Siemers. "Gene Set Enrichment Analysis". En Methods in Molecular Biology, 99–121. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-175-2_6.
Texto completoHung, Jui-Hung. "Gene Set/Pathway Enrichment Analysis". En Methods in Molecular Biology, 201–13. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-107-3_13.
Texto completoStiglic, Gregor. "Gene Set Enrichment Meta-Learning Analysis". En Encyclopedia of the Sciences of Learning, 1344–46. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_1755.
Texto completoFalcon, S. y R. Gentleman. "Hypergeometric Testing Used for Gene Set Enrichment Analysis". En Bioconductor Case Studies, 207–20. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77240-0_14.
Texto completoBayá, Ariel E., Mónica G. Larese, Pablo M. Granitto, Juan Carlos Gómez y Elizabeth Tapia. "Gene Set Enrichment Analysis Using Non-parametric Scores". En Advances in Bioinformatics and Computational Biology, 12–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73731-5_2.
Texto completoZhu, Min, Xiaolai Li, Shujie Wang, Wei Guo y Xueling Li. "Characterization of Radiotherapy Sensitivity Genes by Comparative Gene Set Enrichment Analysis". En Intelligent Computing Theories and Application, 205–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95933-7_25.
Texto completoKaragiannaki, Ioulia, Yannis Pantazis, Ekaterini Chatzaki y Ioannis Tsamardinos. "Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data". En Discovery Science, 246–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61527-7_17.
Texto completo"Gene Set Enrichment Analysis". En Encyclopedia of Systems Biology, 806. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_100552.
Texto completo"GSEA (gene set enrichment analysis)". En Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 827. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_7187.
Texto completoActas de conferencias sobre el tema "Metabolite set enrichment analysis"
Clark, Neil R., Maciej Szymkiewicz, Zichen Wang, Caroline D. Monteiro, Matthew R. Jones y Avi Ma'ayan. "Principle Angle Enrichment Analysis (PAEA): Dimensionally reduced multivariate gene set enrichment analysis tool". En 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359689.
Texto completoYidong Chen, Fan Yang y Paul S. Meltzer. "Application of gene set enrichment method to ChIP-chip data analysis". En 2008 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2008. http://dx.doi.org/10.1109/gensips.2008.4555684.
Texto completoWANG, YONGJIA, STANLEY J. WATSON y FAN MENG. "EXPLORING IMPORTANT ISSUES IN THE IMPLEMENTATION OF GENE SET ENRICHMENT ANALYSIS". En Proceedings of the International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702098_0007.
Texto completoKim, Jaeyoung, Hyungmin Lee y Miyoung Shin. "Identifying Biologically Significant Pathways by Gene Set Enrichment Analysis Using Fisher's Criterion". En 2008 Second International Conference on Future Generation Communication and Networking (FGCN). IEEE, 2008. http://dx.doi.org/10.1109/fgcn.2008.212.
Texto completoPraveen Kumar, A., AJ Kovatich, A. Biancotto, F. Cheung, JK Davidson-Moncada, L. Kvecher, J. Liu et al. "Abstract P4-09-14: Analysis of breast cancer recurrence using gene set enrichment analysis". En Abstracts: 2017 San Antonio Breast Cancer Symposium; December 5-9, 2017; San Antonio, Texas. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.sabcs17-p4-09-14.
Texto completoJones, Matthew R. "Abstract B1-35: Enrichr2: Next generation gene set enrichment analysis web-based tool". En Abstracts: AACR Special Conference: Computational and Systems Biology of Cancer; February 8-11, 2015; San Francisco, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.compsysbio-b1-35.
Texto completoKumar, Ashwani y Tiratha Raj Singh. "Systems biology approach for gene set enrichment and topological analysis of Alzheimer's disease pathway". En 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552132.
Texto completoMpindi, John Patrick, Dimitry Bychkov, Yadav Bhagwan, Disha Malani, Hirasawa Akira, Khalid Saeed, Susanne Hultsch et al. "Abstract 4184: Drug set enrichment analysis : A computational approach to identify functional drug sets". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4184.
Texto completoGebczynska, Magdalena. "LEADERSHIP STYLE, ORGANIZATIONAL COMMITMENT, WORK FAMILY ENRICHMENT AND AUTONOMY AS PREDICTORS OF EMPLOYEE JOB SATISFACTION. A FUZZY � SET ANALYSIS". En 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018/1.5/s05.077.
Texto completoWenzel, Alexander T., Devora Champa, Stephen B. Howell, Jill P. Mesirov y Olivier Harismendy. "Abstract 4411: A gene set enrichment analysis approach in single-cells along pseudotime trajectories reveals the dynamic activity of oncogenic pathways". En Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4411.
Texto completo