Literatura académica sobre el tema "Microstructured surface"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Microstructured surface".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Microstructured surface"
Clasen, Antje y Antonia B. Kesel. "Microstructural Surface Properties of Drifting Seeds—A Model for Non-Toxic Antifouling Solutions". Biomimetics 4, n.º 2 (13 de mayo de 2019): 37. http://dx.doi.org/10.3390/biomimetics4020037.
Texto completoGuo, Bing, Qing Liang Zhao, Yan Hou, Cheng Ge y Xin Yu. "Ultrasonic Vibration Assisted Grinding of Microstructures on Binderless Tungsten Carbide (WC)". Key Engineering Materials 625 (agosto de 2014): 475–79. http://dx.doi.org/10.4028/www.scientific.net/kem.625.475.
Texto completoSun, Jiazhen, Chenghu Yun, Bo Cui, Pingping Li, Guangping Liu, Xin Wang y Fuqiang Chu. "A Facile Approach for Fabricating Microstructured Surface Based on Etched Template by Inkjet Printing Technology". Polymers 10, n.º 11 (31 de octubre de 2018): 1209. http://dx.doi.org/10.3390/polym10111209.
Texto completoBaum, Martina J., Lars Heepe, Elena Fadeeva y Stanislav N. Gorb. "Dry friction of microstructured polymer surfaces inspired by snake skin". Beilstein Journal of Nanotechnology 5 (21 de julio de 2014): 1091–103. http://dx.doi.org/10.3762/bjnano.5.122.
Texto completoNonomura, Yoshimune, Shigeyuki Komura y Kaoru Tsujii. "Surface-Active Particles with Microstructured Surfaces". Langmuir 21, n.º 21 (octubre de 2005): 9409–11. http://dx.doi.org/10.1021/la051816m.
Texto completoCai, Yukui, Wenlong Chang, Xichun Luo y Yi Qin. "Superhydrophobicity of microstructured surfaces on zirconia by nanosecond pulsed laser". Journal of Micromanufacturing 2, n.º 1 (9 de octubre de 2018): 5–14. http://dx.doi.org/10.1177/2516598418799933.
Texto completoZhang, Dawei, Haiyang Li, Xiaoli Chen, Hongchang Qian y Xiaogang Li. "Effect of Surface Microstructures on Hydrophobicity and Barrier Property of Anticorrosive Coatings Prepared by Soft Lithography". Advances in Materials Science and Engineering 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/342184.
Texto completoZHENG, Lijun. "Superhydrophobicity from microstructured surface". Chinese Science Bulletin 49, n.º 17 (2004): 1779. http://dx.doi.org/10.1360/04wb0047.
Texto completoZheng, Lijun, Xuedong Wu, Zeng Lou y Dan Wu. "Superhydrophobicity from microstructured surface". Chinese Science Bulletin 49, n.º 17 (septiembre de 2004): 1779–87. http://dx.doi.org/10.1007/bf03183400.
Texto completoLazauskas, Algirdas, Viktoras Grigaliūnas y Dalius Jucius. "Recovery Behavior of Microstructured Thiol-Ene Shape-Memory Film". Coatings 9, n.º 4 (20 de abril de 2019): 267. http://dx.doi.org/10.3390/coatings9040267.
Texto completoTesis sobre el tema "Microstructured surface"
Neumann, Stephan, Georg Jacobs, Achim Feldermann y Felix Straßburger. "Reducing Friction and Leakage by Means of Microstructured Sealing Surfaces – Example Mechanical Face Seal". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199867.
Texto completoYang, Zhugen. "3D-Microstructured Protein Chip for Cancer Diagnosis". Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00780192.
Texto completoZhang, Bo. "Magnetic fields near microstructured surfaces : application to atom chips". Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/2898/.
Texto completoMikrotechnologische Oberflächen, sogenannte Atomchips, sind eine etablierte Methode zum Speichern und Manipulieren von Atomen geworden. Das hat Anwendungen in der Atom-Interferometrie, Quanteninformationsverarbeitung und Vielteilchensystemen vereinfacht. Magnetische Fallenpotentiale mit beliebigen Geometrien werden durch Atomchips mit miniaturisierten stromführenden Leiterbahnen auf einer Festkörperunterlage realisiert. Atome können bei Temperaturen im $mu$ K oder sogar nK-Bereich in einer solchen Falle gespeichert und gekühlt werden. Allerdings können kalte Atome signifikant durch die Chip-Oberfläche gestört werden, die sich typischerweise auf Raumtemperatur befindet. Die durch thermische Ströme im Chip erzeugten magnetischen Feldfluktuationen können Spin-Flips der Atome induzieren und Verlust, Erwärmung und Dekohärenz zur Folge haben. In dieser Dissertation erweitern wir frühere Arbeiten über durch magnetisches Rauschen induzierte Spin-Flip-Ratenund betrachten kompliziertere Geometrien, wie sie typischerweise auf einem Atom-Chip anzutreffen sind: Geschichtete Strukturen und metallische Leitungen mit endlichem Querschnitt. Wir diskutieren auch einige Aspekte von Aomchips aus Supraleitenden Strukturen die als Mittel zur Unterdrückung magnetischer Feldfluktuationen vorgeschlagen wurden. Die Arbeit beschreibt analytische und numerische Rechnungen von Spin-Flip Raten auf Grundlage magnetischer Greensfunktionen. Für einen Chip mit einem metallischen Top-Layer hängt das magnetische Rauschen hauptsächlich von der Dicke des Layers ab, solange die unteren Layer eine deutlich kleinere Leitfähigkeit haben. Auf Grundlage dieses Ergebnisses werden Skalengesetze für Verlustraten über einem dünnen metallischen Leiter hergeleitet. Eine gute Übereinstimmung mit Experimenten wird in dem Bereich erreicht, wo der Abstand zwischen Atom und Oberfläche in der Größenordnung der Eindringtiefe des Metalls ist. Da in Experimenten metallische Layer immer geätzt werden, um verschiedene stromleitende Bahnen vonenander zu trennen, wurde der Einfluß eines endlichen Querschnittsauf das magnetische Rauschen berücksichtigt. Das lokale Spektrum des magnetischen Feldes in der Nähe einer metallischen Mikrostruktur wurde mit Hilfe von Randintegralen numerisch untersucht. Das magnetische Rauschen hängt signifikant von der Polarisierung über flachen Leiterbahnen mit endlichem Querschnitt ab, im Unterschied zu einem unendlich breiten Leiter. Es wurden auch Korrelationen zwischen mehreren Leitern berücksichtigt. Im letzten Teil werden supraleitende Atomchips betrachtet. Magnetische Fallen, die von supraleitenden Bahnen im Meissner Zustand und im gemischten Zustand sind werden analytisch durch die Methode der konformen Abbildung und numerisch untersucht. Die Eigenschaften der durch supraleitende Bahnen erzeugten Fallen werden erforscht und mit normal leitenden verglichen: Sie verhalten sich qualitativ sehr ähnlich und öffnen einen Weg zur weiteren Miniaturisierung von Fallen, wegen dem Vorteil von geringem magnetischem Rauschen. Wir diskutieren kritische Ströme und Felder für einige Geometrien.
Bostanci, Huseyin. "HIGH HEAT FLUX SPRAY COOLING WITH AMMONIA ON ENHANCED SURFACES". Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3209.
Texto completoPh.D.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering PhD
Wunderlich, Philipp Verfasser], Ulrich [Akademischer Betreuer] [Simon y Dirk Uwe [Akademischer Betreuer] Sauer. "Surface-modified microstructured carbon electrodes for lithium-oxygen batteries / Philipp Wunderlich ; Ulrich Simon, Dirk Uwe Sauer". Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1220082635/34.
Texto completoWidyaya, Vania Tanda [Verfasser] y Karen [Akademischer Betreuer] Lienkamp. "Three-dimensional, bioactive microstructured surface-attached polymer network by microcontact printing - simultaneous antimicrobial activity, protein repellency, and cell compatibility". Freiburg : Universität, 2019. http://d-nb.info/1205663304/34.
Texto completoYata, Vishnu Vardhan Reddy. "Investigation of Spray Cooling Schemes for Dynamic Thermal Management". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984153/.
Texto completoAqil, Sanaa. "Wetting of microstructured surfaces". Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431843.
Texto completoRjiba, Narjes. "Fibre de coton : microstructures et propriétés de surface". Mulhouse, 2007. http://www.theses.fr/2007MULH0873.
Texto completoThe aim of this work was to characterize the surface of the cotton fibre from a physical and chemical point of view. Raw and ethanol extracted fibres were particularly analysed. This characterization was mainly performed by means of inverse gas chromatography (IGC), which allowed us to determine the surface energy of the fibres as a function of temperature as well as their surface morphology at a molecular scale, before and alter treatment. It was shown that the thermodynamic surface energy of the raw cotton fibre strongly depends on the presence of waxes and pectins which usually cover such a type of fibre. In particular, the melting of waxes on the fibre surface, in a range of temperatures from 50 to 90°C, is clearly pointed out. The nano-morphological aspects of the cotton fibre surface are also greatly affected by the presence of waxes: ethanol extraction leading to a more homogeneous surface from a topographical point of view. To confirm the results obtained by IGC, the characterization of cotton fibres was completed, in the second part of this work, by means of other microscopical (electronic and atomic force microscopies ) and spectroscopie (X-ray photoelectron spectroscopy, vibrational spectroscopies,. . . ) techniques
Agarwal, Vivek. "Microstructure studies in surfactant systems /". View online ; access limited to URI, 2004. http://wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3160026.
Texto completoLibros sobre el tema "Microstructured surface"
Tsukruk, Vladimir V. y Kathryn J. Wahl, eds. Microstructure and Microtribology of Polymer Surfaces. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0741.
Texto completoLi, J. M. Image-Based Fractal Description of Microstructures. Boston, MA: Springer US, 2003.
Buscar texto completoWalgraef, D. Patterns, Defects and Microstructures in Nonequilibrium Systems: Applications in Materials Science. Dordrecht: Springer Netherlands, 1987.
Buscar texto completoNATO Advanced Research Workshop on Spectroscopy of Semiconductor Microstructures (1989 Venice, Italy). Spectroscopy of semiconductor microstructures. New York: Plenum Press, 1989.
Buscar texto completoNastasi, Michael. Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures. Dordrecht: Springer Netherlands, 1993.
Buscar texto completoTorquato, Salvatore. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York, NY: Springer New York, 2002.
Buscar texto completoDavis, H. Ted. Statistical Thermodynamics and Differential Geometry of Microstructured Materials. New York, NY: Springer New York, 1993.
Buscar texto completoMason, Stephen. The microstructure, mechanical properties and surface transformations of a syalon ceramic. [s.l.]: typescript, 1988.
Buscar texto completoPolymer interfaces: Structure and strength. Munich: Hanser Publishers, 1994.
Buscar texto completoJennings, Hamlin. The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability. Dordrecht: Springer Netherlands, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Microstructured surface"
Kong, Lingbao, Zhongchen Cao y Laiting Ho. "Bonnet Polishing of Microstructured Surface". En Micro/Nano Technologies, 371–420. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0098-1_11.
Texto completoKong, Lingbao, Zhongchen Cao y Laiting Ho. "Bonnet Polishing of Microstructured Surface". En Micro/Nano Technologies, 1–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6588-0_11-1.
Texto completoKong, Lingbao, Zhongchen Cao y Laiting Ho. "Bonnet Polishing of Microstructured Surface". En Micro/Nano Technologies, 1–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6588-0_11-2.
Texto completoXie, Jin. "Precision Grinding for Functional Microstructured Surface". En Micro/Nano Technologies, 301–31. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0098-1_9.
Texto completoXie, J. "Precision Grinding for Functional Microstructured Surface". En Micro/Nano Technologies, 1–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6588-0_9-1.
Texto completoXie, J. "Precision Grinding for Functional Microstructured Surface". En Micro/Nano Technologies, 1–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6588-0_9-2.
Texto completoXie, J. "Precision Grinding for Functional Microstructured Surface". En Micro/Nano Technologies, 1–31. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6588-0_9-3.
Texto completoAdolph, Torsten, Willi Schönauer, Roman Koch y Gunter Knoll. "Capability of FDEM for Journal Bearings with Microstructured Surface". En High Performance Computing in Science and Engineering, Garching/Munich 2009, 175–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13872-0_15.
Texto completoSharma, D. K. y S. M. Tripathi. "Theoretical Implications for Surface Plasmon Resonance Based on Microstructured Optical Fiber". En Springer Proceedings in Physics, 43–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6467-3_6.
Texto completoSharma, Dinesh Kumar y Saurabh Mani Tripathi. "Surface Plasmon Resonance Based Microstructured Optical Fiber Sensor in IR Regime Using ITO Layer". En Springer Proceedings in Physics, 727–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_168.
Texto completoActas de conferencias sobre el tema "Microstructured surface"
Fu, Yangyang, Huihui Wang, Bocong Zheng, Peng Zhang, Qi Hua Fan, Xinxin Wang y John P. Verboncoeur. "Microplasma Formation Around a Microstructured Surface". En 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588403.
Texto completoNagayama, Gyoko, Ryuji Ando y Takaharu Tsuruta. "Microscopic Wetting at Microstructured Surface of Porous Silicon". En ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18452.
Texto completoWebb, Rebecca N., Julie A. Horvath y Allen G. Boartfield. "Enhanced Heat Collection Element Performance Through Surface Geometry". En ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54454.
Texto completoMaikowske, Stefan, Juergen J. Brandner y Roland Dittmeyer. "Efficient Heat Transfer by Phase Transition in Microstructured Devices". En ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44116.
Texto completoLiu, Tingyi Leo y Chang-Jin C. J. Kim. "Microstructured SiO2 surface repellant to liquids without coating". En 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627091.
Texto completoBrückner, Frank, Tina Clausnitzer, Oliver Burmeister, Daniel Friedrich, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tünnermann y Roman Schnabel. "100% reflectivity from a monolithic dielectric microstructured surface". En MOEMS-MEMS 2008 Micro and Nanofabrication, editado por Thomas J. Suleski, Winston V. Schoenfeld y Jian J. Wang. SPIE, 2008. http://dx.doi.org/10.1117/12.767775.
Texto completoBitzer, M., J. Zosel y M. Gebhardt. "Replication and surface enhancement of microstructured optical components". En Optical Systems Design 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.625172.
Texto completoAili, Abulimiti, Qiaoyu Ge y TieJun Zhang. "Condensation of Low-Surface-Tension Fluids on Microstructured Surfaces at Low Temperature". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71675.
Texto completoTchahame, Joël Cabrel, Jean-Charles Beugnot, Kien Phan Huy, Vincent Laude, Alexandre Kudlinski y Thibaut Sylvestre. "Observation of surface Brillouin scattering in microstructured optical fibers". En Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu5i.2.
Texto completoKagerer, Bernd, Rainer Brodmann, Juergen Valentin, Jan Filzek y Uwe Popp. "3D-confocal microscopy for surface analysis of microstructured materials". En International Symposium on Optical Science and Technology, editado por Stephen F. Sagan, Gerald F. Marshall y Leo Beiser. SPIE, 2002. http://dx.doi.org/10.1117/12.469201.
Texto completoInformes sobre el tema "Microstructured surface"
Taube, M., W. T. Chase, A. J. Davenport y A. P. Jardine. Investigation and replication of the surface microstructure of early Chinese black bronze mirrors. Office of Scientific and Technical Information (OSTI), julio de 1994. http://dx.doi.org/10.2172/10161385.
Texto completoKruger, Jerome. Role of Surface and Thin Film Composition and Microstructure and Properties of Materials. Fort Belvoir, VA: Defense Technical Information Center, junio de 1988. http://dx.doi.org/10.21236/ada197995.
Texto completoFreibert, Franz Joseph y Alison Leslie Pugmire. Microstructural Changes with Mechanically Induced Surface δ → α’ Transformation: Concerns about Ga Stabilized delta-Pu Coupon Surface Preparations. Office of Scientific and Technical Information (OSTI), junio de 2017. http://dx.doi.org/10.2172/1361470.
Texto completoSmugeresky, J. E., D. M. Keicher, J. A. Romero, M. L. Griffith y L. D. Harwell. Laser engineered net shaping (LENS{trademark}) process: Optimization of surface finish and microstructural properties. Office of Scientific and Technical Information (OSTI), noviembre de 1997. http://dx.doi.org/10.2172/554828.
Texto completoLinch, Heidi Sue. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10125229.
Texto completoHwa, Yoon, Christopher Kumai, Nancy Yang, Joshua Yee y Thomas Devine. Effect of Microstructural Bands on the Localized Corrosion of Laser Surface-melted 316L Stainless Steel. Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1825629.
Texto completoBieler, T. R., D. Baars, K. T. Hartwig, C. Compton y T. L. Grimm. Relationships between deformation and microstructure evolution and minimizing surface roughness after BCP processing in RRR Nb cavitites. Office of Scientific and Technical Information (OSTI), mayo de 2009. http://dx.doi.org/10.2172/953204.
Texto completoGourley, P. L., A. E. McDonald, M. F. Gourley y J. Bellum. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/527562.
Texto completoHsia, K. Jimmy, Arne J. Pearlstein, Alexander Scheeline y Jian Ku Shang. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report. Office of Scientific and Technical Information (OSTI), noviembre de 2000. http://dx.doi.org/10.2172/771280.
Texto completoHanrahan, R. J. Jr, M. E. Hawley y G. W. Brown. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium. Office of Scientific and Technical Information (OSTI), diciembre de 1998. http://dx.doi.org/10.2172/296785.
Texto completo