Literatura académica sobre el tema "Motor vehicles Drag (Aerodynamics)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Motor vehicles Drag (Aerodynamics)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Motor vehicles Drag (Aerodynamics)"
Zhang, Yingchao, Ruidong Wang, Chao Yang, Zijie Wang y Zhe Zhang. "Experimental investigation on wake flow structures of Motor Industry Research Association square-back model". Advances in Mechanical Engineering 12, n.º 6 (junio de 2020): 168781402093231. http://dx.doi.org/10.1177/1687814020932313.
Texto completoWYCZALEK, FLOYD A. "ULTRA LIGHT ELECTRIC VEHICLES (EV)". Journal of Circuits, Systems and Computers 05, n.º 01 (marzo de 1995): 81–91. http://dx.doi.org/10.1142/s0218126695000072.
Texto completoChen, Zhen, Zhenqqi Gu y Tao Jiang. "Research on transient aerodynamic characteristics of windshield wipers of vehicles". International Journal of Numerical Methods for Heat & Fluid Flow 29, n.º 8 (5 de agosto de 2019): 2870–84. http://dx.doi.org/10.1108/hff-09-2018-0531.
Texto completoStabile, Pietro, Federico Ballo, Gianpiero Mastinu y Massimiliano Gobbi. "An Ultra-Efficient Lightweight Electric Vehicle—Power Demand Analysis to Enable Lightweight Construction". Energies 14, n.º 3 (1 de febrero de 2021): 766. http://dx.doi.org/10.3390/en14030766.
Texto completoKim, Wootaek, Jongchan Noh y Jinwook Lee. "Effects of Vehicle Type and Inter-Vehicle Distance on Aerodynamic Characteristics during Vehicle Platooning". Applied Sciences 11, n.º 9 (30 de abril de 2021): 4096. http://dx.doi.org/10.3390/app11094096.
Texto completoPodrigalo, Mikhail, Volodymyr Krasnokutskyi, Vitaliy Kashkanov, Olexander Tkachenko y Аlexander Yanchik. "Іmprovement of driving-speed properties improvement of the method for selecting the parameters of the motor-transmission unit car". Journal of Mechanical Engineering and Transport 13, n.º 1 (2021): 111–17. http://dx.doi.org/10.31649/2413-4503-2021-13-1-111-117.
Texto completoIlea, L. y D. Iozsa. "Wheels aerodynamics and impact on passenger vehicles drag coefficient". IOP Conference Series: Materials Science and Engineering 444 (29 de noviembre de 2018): 072005. http://dx.doi.org/10.1088/1757-899x/444/7/072005.
Texto completoSharke, Paul. "Smooth Body". Mechanical Engineering 121, n.º 10 (1 de octubre de 1999): 74–77. http://dx.doi.org/10.1115/1.1999-oct-6.
Texto completoKothari, Priyank. "Reduction of Aerodynamic Drag of Heavy Vehicles using CFD". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 2670–78. http://dx.doi.org/10.22214/ijraset.2021.37853.
Texto completoSong, Xiao-wen, Guo-geng Zhang, Yun Wang y Shu-gen Hu. "Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels". Journal of Zhejiang University-SCIENCE A 12, n.º 7 (julio de 2011): 543–51. http://dx.doi.org/10.1631/jzus.a1000505.
Texto completoTesis sobre el tema "Motor vehicles Drag (Aerodynamics)"
Esterhuyse, JC. "Aerodynamic drag of a two-dimensional external compression inlet at supersonic speed". Thesis, Cape Technikon, 1997. http://hdl.handle.net/20.500.11838/1297.
Texto completoThis study forms the basis from which the aerodynamic drag of a practical supersonic inlet can be predicted. In air-breathing propulsion systems, as used in high performance flight vehicles, the fuel is carried onboard and the oxygen required for combustion is ingested from the ambient atmosphere. The main function of the inlet is to compress the air from supersonic to subsonic conditions with as little flow distortion as possible. When the velocity of the vehicle approaches or exceeds sonic velocity (M = 1,0) a number of considerations apply to the induction system. The reason for this is that the velocity of the ingested air has to be reduced to appreciably less than sonic velocity, typically to M = 0,3. Failure to do so will cause the propulsion system to be inoperative and cause damage. In the process of compressing the air from supersonic to subsonic conditions a drag penalty is paid. The drag characteristics are a function of the external geometry and internal flow control system of the inlet. The problem which was investigated dealt with drag of a specific type of inlet, namely a two-dimensional external compression inlet. This study is directed at formulating definitive relationships which can be used to design functional inlet systems. To this effect the project was carried out over three phases, a theoretical investigation where a fluid-flow analysis was done of the factors influencing drag. The second phase covered a comprehensive experimental study where intensive wind-tunnel tests were conducted for flight Mach numbers of M = 1,8; M = 2,0; M = 2,2; M = 2,3 and M = 2,4. During the third phase a comparison, between the theoretical values and experimental data was done, for validating the predicted aerodynamic drag figures. The following findings are worth recording: • the increase in total drag below the full flow conditions is more severe than predicted due to the contribution of spillage drag; • the range for subcritical mode of operation is smaller than expected due to boundary layer effects. The study has shown that reasonably good correlation could be achieved between the theoretical analysis and empirical test at low subcritical modes of operation. This suggests that the study has achieved its primary objective.
Esterhuyse, J. C. "Aerodynamic drag of a two-dimensional external compression inlet at supersonic speed /". [S.l. : s.n.], 1997. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1033&context=td_ctech.
Texto completoOrselli, Erdem. "Computation Of Drag Force On Single And Close-following Vehicles". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607619/index.pdf.
Texto completoFluent"
was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigated in simulation of various test cases available in the literature. The study was extended to simulate the aerodynamics of the vehicles in close-following situation. The results were then compared with available wind tunnel test data.
Luke, Mark Elden. "Predicting Drag Polars For Micro Air Vehicles". Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd297.pdf.
Texto completoBarker, Brian W. "Effect of Adaptive Tabs on Drag of a Square-Base Bluff Body". DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1295.
Texto completoMarchetti, Paul J. "Electric propulsion and controller design for drag-free spacecraft operation in low earth orbit". Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-122006-144358/.
Texto completoLittlewood, Rob. "Novel methods of drag reduction for squareback road vehicles". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12534.
Texto completoKim, Yusik. "Wind turbine aerodynamics in freestream turbulence". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/360372/.
Texto completoCastillo-Rivera, Salvador. "Advanced modelling of helicopter nonlinear dynamics and aerodynamics". Thesis, City University London, 2014. http://openaccess.city.ac.uk/13169/.
Texto completoWells, Andrew K. "Slat aerodynamics and aeroacoustics with flow control". Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/49932/.
Texto completoLibros sobre el tema "Motor vehicles Drag (Aerodynamics)"
Trefny, Charles J. On the use of external burning to reduce aerospace vehicle transonic drag. [Washington, D.C.]: NASA, 1990.
Buscar texto completoFijałkowski, Bogdan. Modele matematyczne wybranych lotniczych i motoryzacyjnych mechano-elektro-termicznych dyskretnych nadsystemów dynamicznych. Kraków: Politechnika Krakowska im. Tadeusza Kościuszki, 1987.
Buscar texto completoLivesay, Ed. Design, creation, and proper use of a drag device for the determination of drag factor. Jacksonville, Fla: Institute of Police Technology and Management, University of North Florida, 1999.
Buscar texto completoMini Conference on Vehicle System Dynamics, Identification, and Anomalies (2nd 1990 Budapesti Műszaki Egyetem). Proceedings of the 2nd Mini Conference on Vehicle System Dynamics, Identification, and Anomalies: Held at the Technical University of Budapest, Hungary, Budapest, 12-15 November, 1990. Budapest: Technical University of Budapest, 1992.
Buscar texto completoGilyard, Glenn B. In-flight transport performance optimization: An experimental flight research program and an operational scenario. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1997.
Buscar texto completoGilyard, Glenn B. In-flight transport performance optimization: An experimental flight research program and an operational scenario. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1997.
Buscar texto completoClaude, Lichtenstein y Engler Franz 1949-, eds. Streamlined: A metaphor for progress : the esthetics of minimized drag. [Baden, Switzerland]: Lars Müller, 1990.
Buscar texto completoStreamlined: A metaphor for progress : the esthetics of minimized drag. Baden: Lars Müller, 1995.
Buscar texto completoClaude, Lichtenstein y Engler Franz 1949-, eds. Streamlined: A metaphor for progress : the esthetics of mimimized drag. Baden, Switzerland: Lars Muüller, 1990.
Buscar texto completo1958-, Sumantran V. y Sovran Gino, eds. Vehicle aerodynamics. Warrendale, PA: Society of Automotive Engineers, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Motor vehicles Drag (Aerodynamics)"
Pankajakshan, Ramesh, C. Bruce Hilbert y David L. Whitfield. "Passive Devices for Reducing Base Pressure Drag in Class 8 Trucks". En The Aerodynamics of Heavy Vehicles III, 227–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_14.
Texto completoElofsson, Per, Guillaume Mercier, Bradley D. Duncan y Samuel Boissinot. "Accurate Drag Prediction Using Transient Aerodynamics Simulations for a Heavy Truck in Yaw Flow". En The Aerodynamics of Heavy Vehicles III, 343–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_22.
Texto completoBruneau, Charles-Henri, Emmanuel Creusé, Delphine Depeyras, Patrick Gilliéron y Iraj Mortazavi. "Analysis of the Active and Passive Drag Reduction Strategies Behind a Square Back Ground Vehicle". En The Aerodynamics of Heavy Vehicles III, 363–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_23.
Texto completoKehs, J., K. Visser, J. Grossmann, C. Horrell y A. Smith. "Experimental and Full Scale Investigation of Base Cavity Drag Reduction Devices for Use on Ground Transport Vehicles". En The Aerodynamics of Heavy Vehicles III, 269–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_17.
Texto completoHsu, Tsun-Ya, Mustapha Hammache y Fred Browand. "Base Flaps and Oscillatory Perturbations to Decrease Base Drag". En The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 303–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_27.
Texto completoSeifert, A., O. Stalnov, D. Sperber, G. Arwatz, V. Palei, S. David, I. Dayan y I. Fono. "Large Trucks Drag Reduction using Active Flow Control". En The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, 115–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85070-0_10.
Texto completoPaul, James C. "Aerodynamic Drag Reduction of Open-Top Gondola and Hopper Cars in Unit Train Operation and Impact on Train Fuel Consumption and Economics". En The Aerodynamics of Heavy Vehicles III, 37–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20122-1_3.
Texto completoCooper, Kevin R. "Commercial Vehicle Aerodynamic Drag Reduction: Historical Perspective as a Guide". En The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 9–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_2.
Texto completoArcas, D. R. y L. G. Redekopp. "Drag Reduction of Two-Dimensional Bodies by Addition of Boat Tails". En The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 237–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_23.
Texto completoCoon, J. D. y K. D. Visser. "Drag Reduction of a Tractor-Trailer Using Planar Boat Tail Plates". En The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 249–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_24.
Texto completoActas de conferencias sobre el tema "Motor vehicles Drag (Aerodynamics)"
d'Hondt, Marion, Patrick Gillieron y Philippe Devinant. "Aerodynamic drag and flow rate through engine compartments of motor vehicles". En 28th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4955.
Texto completoWatkins, Simon y Clive Humphris. "Solar Vehicles: The Challenge of Maximum Speed From Minimal Power". En ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31245.
Texto completoDriant, Thomas, Stéphane Moreau, Hachimi Fellouah y Alain Desrochers. "Aero-Thermal Optimization of a Hybrid Roadster Tricycle Using Multidisciplinary Design Optimization Tools". En ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21505.
Texto completoDe Kock, J. P., R. F. Laubscher, Sunita Kruger y N. Janse van Rensburg. "Numerical and Experimental Aerodynamic Evaluation of a Solar Vehicle". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71297.
Texto completoSirenko, Volodymyr, Roman Pavlovs’ky y Upendra S. Rohatgi. "Methods of Reducing Vehicle Aerodynamic Drag". En ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72491.
Texto completoHassan, Basil, Walter Gutierrez, Walter Wolfe, Mary Walker, Bruce Ruefer y Jeffrey Hurt. "Numerical prediction of aerodynamic drag for heavy ground transportation vehicles". En 13th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1913.
Texto completoHeidemann Jr, R., A. F. A. Rodrigues, A. Bohrer, C. L. Gertz y A. Cervieri. "Underbody aerodynamics: Drag coefficient reduction in road vehicles". En 2018 SAE Brasil Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-36-0291.
Texto completoRamchandran, Gautham, Archana Nepak y Yagnavalkya S. Mukkamala. "Re-designing door handles to reduce aerodynamic drag in road vehicles". En 32nd AIAA Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2013.
Texto completoLangener, Tobias, Leik Myrabo y Zvi Rusak. "Inlet Aerodynamics and Ram-Drag of Laser-Propelled Lightcraft Vehicles". En 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4806.
Texto completoLangener, Tobias, Leik Myrabo, Zvi Rusak, Claude Phipps, Kimiya Komurasaki y John Sinko. "Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles". En BEAMED ENERGY PROPULSION: 6th International Symposium. AIP, 2010. http://dx.doi.org/10.1063/1.3435458.
Texto completo