Literatura académica sobre el tema "Movement detection system"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Movement detection system".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Movement detection system"
Kozhekin, Nikita, Ichiro Hagiwara, Mikhail Senin y Vladimir Savchenko. "Simple CSRBF animation system with movement interpolation and collision detection". Proceedings of Design & Systems Conference 2004.14 (2004): 99–100. http://dx.doi.org/10.1299/jsmedsd.2004.14.99.
Texto completoKozhekin, N., I. Hagiwara, M. Senin y V. Savchenko. "Simple CSRBF animation system with movement interpolation and collosion detection". Proceedings of The Computational Mechanics Conference 2004.17 (2004): 213–14. http://dx.doi.org/10.1299/jsmecmd.2004.17.213.
Texto completoNakano, T. "System for driver's eye movement detection". JSAE Review 16, n.º 1 (enero de 1995): 74–76. http://dx.doi.org/10.1016/0389-4304(94)00054-w.
Texto completoMohd Tamil, Emran, Ti Siang Tey, Mohd Rais Mustafa, Mohd Yamani Idna Idris y Mohd Hairul Nizam Md Nasir. "Automated Clinical Research Mice Movement Detection System". International Journal of Technology, Knowledge, and Society 4, n.º 6 (2008): 63–76. http://dx.doi.org/10.18848/1832-3669/cgp/v04i06/55953.
Texto completoFelisberto, Filipe, Rosalía Laza, Florentino Fdez-Riverola y António Pereira. "A Distributed Multiagent System Architecture for Body Area Networks Applied to Healthcare Monitoring". BioMed Research International 2015 (2015): 1–17. http://dx.doi.org/10.1155/2015/192454.
Texto completoSrikanth, K. "Alert System for Fall Detection". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 1739–47. http://dx.doi.org/10.22214/ijraset.2021.37658.
Texto completoChe, Zhong-Yong y Sangchul Kim. "A Surveillance System Using Images and Movement Detection Sensors". Journal of the Institute of Webcasting, Internet and Telecommunication 13, n.º 1 (28 de febrero de 2013): 181–89. http://dx.doi.org/10.7236/jiibc.2013.13.1.181.
Texto completoBaec, Sung-Ho, Min-Sik Jeon y Bong-Jin Ko. "Implementation of Movement Detection System for Patient on Bed". Journal of Korea Navigation Institute 19, n.º 5 (30 de octubre de 2015): 458–63. http://dx.doi.org/10.12673/jant.2015.19.5.458.
Texto completoLin, Chih-Lung, Wen-Ching Chiu, Ting-Ching Chu, Yuan-Hao Ho, Fu-Hsing Chen, Chih-Cheng Hsu, Ping-Hsiao Hsieh et al. "Innovative Head-Mounted System Based on Inertial Sensors and Magnetometer for Detecting Falling Movements". Sensors 20, n.º 20 (12 de octubre de 2020): 5774. http://dx.doi.org/10.3390/s20205774.
Texto completoLin, Chin-Teng, Wei-Ling Jiang, Sheng-Fu Chen, Kuan-Chih Huang y Lun-De Liao. "Design of a Wearable Eye-Movement Detection System Based on Electrooculography Signals and Its Experimental Validation". Biosensors 11, n.º 9 (17 de septiembre de 2021): 343. http://dx.doi.org/10.3390/bios11090343.
Texto completoTesis sobre el tema "Movement detection system"
Liu, Yi. "Movement detection in outdoor scenes for traffic monitoring". Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26698.
Texto completoZhu, Shiping. "Robust detection of object movement by a mobile camera system". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq28696.pdf.
Texto completoBlanchard, Jonathan Mark. "Collision avoidance : a biologically inspired neural network for the detection of approaching objects". Thesis, University of Newcastle upon Tyne, 1998. http://hdl.handle.net/10443/3590.
Texto completoFeng, Dehua. "Determining Intersection Turning Movements with Detection Errors". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1512746695445707.
Texto completoJalloul, Nahed. "Development of a system of acquisition and movement analysis : application on Parkinson's disease". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S096/document.
Texto completoThe work presented in this thesis is concerned with the development of an ambulatory monitoring system for the detection of Levodopa Induced Dyskinesia (LID) in Parkinson’s disease (PD) patients. The system is composed of Inertial Measurement Units (IMUs) that collect movement signals from healthy individuals and PD patients. Different methods are evaluated which consist of LID detection with and without activity classification. Data collected from healthy individuals is used to design a reliable activity classifier. Following that, an algorithm that performs activity classification and dyskinesia detection on data collected from PD patients is tested. A new approach based on complex network analysis is also explored and presents interesting results. The evaluated analysis methods are incorporated into a platform PARADYSE in order to further advance the system’s capabilities
Uppströmer, Viktor y Henning Råberg. "Detecting Lateral Movement in Microsoft Active Directory Log Files : A supervised machine learning approach". Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18337.
Texto completoCyber attacks raise a high threat for companies and organisations worldwide. With the cost of a data breach reaching $3.86million on average, the demand is high fora rapid solution to detect cyber attacks as early as possible. Advanced persistent threats (APT) are sophisticated cyber attacks which have long persistence inside the network. During an APT, the attacker will spread its foothold over the network. This stage, which is one of the most critical steps in an APT, is called lateral movement. The purpose of the thesis is to investigate lateral movement detection with a machine learning approach. Five machine learning algorithms are compared using repeated cross-validation followed statistical testing to determine the best performing algorithm and feature importance. Features used for learning the classifiers are extracted from Active Directory log entries that relate to each other, with a similar workstation, IP, or account name. These features are the basis of a semi-synthetic dataset, which consists of a multiclass classification problem. The experiment concludes that all five algorithms perform with an accuracy of 0.998. RF displays the highest f1-score (0.88) and recall (0.858), SVM performs the best with the performance metric precision (0.972), and DT has the lowest computational cost (1237ms). Based on these results, the thesis concludes that the algorithms RF, SVM, and DT perform best in different scenarios. For instance, SVM should be used if a low amount of false positives is favoured. If the general and balanced performance of multiple metrics is preferred, then RF will perform best. The results also conclude that a significant amount of the examined features can be disregarded in future experiments, as they do not impact the performance of either classifier.
Yekhshatyan, Lora. "Detecting distraction and degraded driver performance with visual behavior metrics". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/910.
Texto completoAl, Mahdawi Basil Mohamed Nouri. "Senior monitoring by using sensors network and optical metrology". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD085.
Texto completoThe objective of the work of this thesis is the contribution in developing novel technical methods in the field of marker-lesssensing systems for use in three vital health areas by using new inexpensive sensors. Several scientific areas are involvedin achieving our objective such as; electronics and signal processing by using the Kinect sensor. Encouraging results wereachieved as presented throughout this thesis. In the first part of this work we present a new real-time marker-less visualsurveillance system for detecting and tracking seniors and monitoring their activities in the indoor environment by usingnetwork of Kinect sensors. The system also identifies the fall event with the elderly. In the second part, we present anew approach for a marker-less movement detection system for influential head movements in the brain Positron EmissionTomography imaging (CT/PET) by employing the Kinect sensor. This work addresses the compensation of the PET imagedegradation due to subject’s head movements. A developed particular phantom and volunteer studies were carried out.The experimental results show the effectiveness of this new system. The third part of the work presents the design andimplementation of a new smart system for controlling an electric wheelchair by special mark-less head movements. Anadaptable algorithm is designed to continuously detect the rotation degrees of the face pose using the Kinect sensor inreal-time that are interpreted as controlling signals through a hardware interface for the electric wheelchair actuators
Giesel, M., A. Yakovleva, Marina Bloj, A. R. Wade, A. M. Norcia y J. M. Harris. "Relative contributions to vergence eye movements of two binocular cues for motion-in-depth". Springer Nature Group, 2019. http://hdl.handle.net/10454/17514.
Texto completoWhen we track an object moving in depth, our eyes rotate in opposite directions. This type of “disjunctive” eye movement is called horizontal vergence. The sensory control signals for vergence arise from multiple visual cues, two of which, changing binocular disparity (CD) and inter-ocular velocity differences (IOVD), are specifically binocular. While it is well known that the CD cue triggers horizontal vergence eye movements, the role of the IOVD cue has only recently been explored. To better understand the relative contribution of CD and IOVD cues in driving horizontal vergence, we recorded vergence eye movements from ten observers in response to four types of stimuli that isolated or combined the two cues to motion-in-depth, using stimulus conditions and CD/IOVD stimuli typical of behavioural motion-in-depth experiments. An analysis of the slopes of the vergence traces and the consistency of the directions of vergence and stimulus movements showed that under our conditions IOVD cues provided very little input to vergence mechanisms. The eye movements that did occur coinciding with the presentation of IOVD stimuli were likely not a response to stimulus motion, but a phoria initiated by the absence of a disparity signal.
Supported by NIH EY018875 (AMN), BBSRC grants BB/M001660/1 (JH), BB/M002543/1 (AW), and BB/MM001210/1 (MB).
Mills, Clayton Harry. "Movement and Force Measurement Systems as a Foundation for Biomimetic Research on Insects". Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/2895.
Texto completoLibros sobre el tema "Movement detection system"
Sharpe, Sybil. Search and surveillance: The movement from evidence to information. Aldershot: Ashgate/Dartmouth, 2000.
Buscar texto completoSharpe, Sybil. Search and Surveillance: The Movement from Evidence to Information. Taylor & Francis Group, 2017.
Buscar texto completoTerrigenous Mass Movements Detection Modelling Early Warning And Mitigation Using Geoinformation Technology. Springer, 2012.
Buscar texto completoMohamed Fathy Hassan.* El-Maghraby. Use of geodetic methods in detecting terrain movements with special reference to the global positioning system. 1991.
Buscar texto completoMichelle, Sneed, Coachella Valley Water District (Calif.) y Geological Survey (U.S.), eds. Detection and measurement of land subsidence using Global Positioning System and interferometric synthetic aperture radar, Coachella Valley, California, 1996-98. Sacramento, Calif: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Buscar texto completoMason, Peggy. The Vestibular Sense. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190237493.003.0018.
Texto completoPhillips, Ian. No More than Meets the Eye. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198722304.003.0009.
Texto completoMazer, Jeffrey y Mitchell M. Levy. Policies, bundles, and protocols in critical care. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0017.
Texto completoMauguière, François y Luis Garcia-Larrea. Somatosensory and Pain Evoked Potentials. Editado por Donald L. Schomer y Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0043.
Texto completoJacquemyn, Yves y Anneke Kwee. Antenatal and intrapartum fetal evaluation. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713333.003.0006.
Texto completoCapítulos de libros sobre el tema "Movement detection system"
Mendes, Paulo A. S. y A. Paulo Coimbra. "Movement Detection and Moving Object Distinction Based on Optical Flow for a Surveillance System". En Transactions on Engineering Technologies, 143–58. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8273-8_12.
Texto completoIwamoto, Shinnosuke, Takashi Sakamoto, Toru Nakata y Toshikazu Kato. "Detection System for Distinguishing Between Initial Reading and Rereading of a Digital Document by Observing Focal Point Movement". En Advances in Intelligent Systems and Computing, 78–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60018-5_8.
Texto completoHwang, Chi Yeon, Geun do Park, Hyang Jun Jeong, In Gyu Park, Yun Joong Kim, Hyeo-Il Ma y Unjoo Lee. "A Portable and User Friendly REM Sleep Detection System Based on Differential Movement of Eyeball Using Optical Sensors". En Communications in Computer and Information Science, 224–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58750-9_32.
Texto completoShin, Jaewan, Dongkyoo Shin, Dongil Shin, Sungmin Her, Soohan Kim y Myungsoo Lee. "Human Movement Detection Algorithm Using 3-Axis Accelerometer Sensor Based on Low-Power Management Scheme for Mobile Health Care System". En Advances in Grid and Pervasive Computing, 81–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13067-0_12.
Texto completoBessonova, Yulia V. y Alexander A. Oboznov. "Eye Movements and Lie Detection". En Intelligent Human Systems Integration, 149–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73888-8_25.
Texto completoHatori, Ayaka. "Automatic Movement Detection Using Mobile Phones". En Advances in Intelligent Systems and Computing, 325–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61578-3_50.
Texto completoReda, Radwa, Manal Tantawi, Howida shedeed y Mohamed F. Tolba. "Analyzing Electrooculography (EOG) for Eye Movement Detection". En Advances in Intelligent Systems and Computing, 179–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14118-9_18.
Texto completoShameem Sharmina, C. H. y Rajesh Reghunadhan. "Electromyography-Based Detection of Human Hand Movement Gestures". En Algorithms for Intelligent Systems, 729–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5243-4_69.
Texto completoGuevara, Cesar, Matilde Santos y Janio Jadán. "Movement Detection Algorithm for Patients with Hip Surgery". En Advances in Intelligent Systems and Computing, 439–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94120-2_42.
Texto completoLi, Ci-Rong, Chie-Yang Kuan, Bing-Zhe He, Wu-En Wu, Chi-Yao Weng y Hung-Min Sun. "A Security System Based on Door Movement Detecting". En Intelligent Data analysis and its Applications, Volume I, 155–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07776-5_17.
Texto completoActas de conferencias sobre el tema "Movement detection system"
Paputungan, Irving Vitra, Mahbub Ramadhan Al Fitri y Unan Yusmaniar Oktiawati. "Motion and Movement Detection for DIY Home Security System". En 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET). IEEE, 2019. http://dx.doi.org/10.1109/csudet47057.2019.9214684.
Texto completoFourlas, George K. y Ilias Maglogiannis. "Human movement detection using attitude and heading reference system". En the 7th International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2674396.2674454.
Texto completoTangsuksant, Watcharin, Chittaphon Aekmunkhongpaisal, Patthiya Cambua, Theekapun Charoenpong y Theerasak Chanwimalueang. "Directional eye movement detection system for virtual keyboard controller". En 2012 5th Biomedical Engineering International Conference (BMEiCON). IEEE, 2012. http://dx.doi.org/10.1109/bmeicon.2012.6465432.
Texto completoLi, Xiao, Yu Yang, Yiming Xu, Chao Wang y Linyang Li. "Crowd Abnormal Behavior Detection Combining Movement and Emotion Descriptors". En ICNSER2020: The 2nd International Conference On Industrial Control Network And System Engineering Research. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3411016.3411166.
Texto completoDarmakusuma, Reza, Ary S. Prihatmanto, Adi Indrayanto y Tati L. Mengko. "Pattern recognition of finger movement detection using Support Vector Machine". En 2012 International Conference on System Engineering and Technology (ICSET). IEEE, 2012. http://dx.doi.org/10.1109/icsengt.2012.6339335.
Texto completoIzzuddin, T. A., M. A. Ariffin, Z. H. Bohari, R. Ghazali y M. H. Jali. "Movement intention detection using neural network for quadriplegic assistive machine". En 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2015. http://dx.doi.org/10.1109/iccsce.2015.7482197.
Texto completoAzargoshasb, S., A. H. Korayem y Sh Tabibian. "A Voice Command Detection system for controlling Movement of SCOUT Robot". En 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM). IEEE, 2018. http://dx.doi.org/10.1109/icrom.2018.8657523.
Texto completoParzych, M., A. Chmielewska, T. Marciniak, A. Dabrowski, A. Chrostowska y M. Klincewicz. "Automatic people density maps generation with use of movement detection analysis". En 2013 6th International Conference on Human System Interactions (HSI). IEEE, 2013. http://dx.doi.org/10.1109/hsi.2013.6577798.
Texto completoChaudhary, Mitika, Vinay Prakash y Neeraj Kumari. "Identification Vehicle Movement Detection in Forest Area using MFCC and KNN". En 2018 International Conference on System Modeling & Advancement in Research Trends (SMART). IEEE, 2018. http://dx.doi.org/10.1109/sysmart.2018.8746936.
Texto completoMiron, Casian, Alexandru Pasarica, Dragos Arotaritei, Hariton Costin, Radu Gabriel Bozomitu y Cristian Rotariu. "Hand gesture detection using a stereo camera system and simulation of movement". En 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2017. http://dx.doi.org/10.1109/atee.2017.7905134.
Texto completoInformes sobre el tema "Movement detection system"
Ianakiev, Kiril D. SNM Movement Detection / Radiation Sensors and Advanced Materials Portfolio Review RadSensing2011 6Li-Metal Based Neutron Detector Systems for Replacing 3He Gas Proportional Counters. Office of Scientific and Technical Information (OSTI), marzo de 2013. http://dx.doi.org/10.2172/1072253.
Texto completo