Literatura académica sobre el tema "Multibiometric"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Multibiometric".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Multibiometric"
Jain, Anil K. y Arun Ross. "Multibiometric systems". Communications of the ACM 47, n.º 1 (1 de enero de 2004): 34. http://dx.doi.org/10.1145/962081.962102.
Texto completoRuchay, A. N. "DEVELOPMENT OF NEW ELECTIVE MULTIBIOMETRIC AUTHENTICATION". Journal of the Ural Federal District. Information security 20, n.º 3 (2020): 34–41. http://dx.doi.org/10.14529/secur200304.
Texto completoAftab, Anum, Farrukh Aslam Khan, Muhammad Khurram Khan, Haider Abbas, Waseem Iqbal y Farhan Riaz. "Hand-based multibiometric systems: state-of-the-art and future challenges". PeerJ Computer Science 7 (7 de octubre de 2021): e707. http://dx.doi.org/10.7717/peerj-cs.707.
Texto completoSelvarani, P. y N. Malarvizhi. "Multibiometric authentication with MATLAB simulation". International Journal of Engineering & Technology 7, n.º 1.7 (5 de febrero de 2018): 47. http://dx.doi.org/10.14419/ijet.v7i1.7.9389.
Texto completoNair, Suresh Kumar Ramachandran, Bir Bhanu, Subir Ghosh y Ninad S. Thakoor. "Predictive models for multibiometric systems". Pattern Recognition 47, n.º 12 (diciembre de 2014): 3779–92. http://dx.doi.org/10.1016/j.patcog.2014.05.020.
Texto completoAlMahafzah, Harbi y Maen Zaid AlRwashdeh. "A Survey of Multibiometric Systems". International Journal of Computer Applications 43, n.º 15 (30 de abril de 2012): 36–43. http://dx.doi.org/10.5120/6182-8612.
Texto completoKovaliuk, Tеtiana, Anastasiia Shevchenko y Nataliia Kobets. "Multibiometric Identification of the Student by His Voice and Visual Biometric Indicators in the Process of Distance Education". Digital Platform: Information Technologies in Sociocultural Sphere 5, n.º 1 (30 de junio de 2022): 90–102. http://dx.doi.org/10.31866/2617-796x.5.1.2022.261293.
Texto completoMahajan, Smita y Asmita Deshpande. "Multibiometric Template Security using Fuzzy Vault". International Journal of Computer Applications 154, n.º 3 (17 de noviembre de 2016): 21–26. http://dx.doi.org/10.5120/ijca2016912053.
Texto completoGyaourova, Aglika y Arun Ross. "Index Codes for Multibiometric Pattern Retrieval". IEEE Transactions on Information Forensics and Security 7, n.º 2 (abril de 2012): 518–29. http://dx.doi.org/10.1109/tifs.2011.2172429.
Texto completoKumar, Amioy y Ajay Kumar. "A Cell-Array-Based Multibiometric Cryptosystem". IEEE Access 4 (2016): 15–25. http://dx.doi.org/10.1109/access.2015.2428277.
Texto completoTesis sobre el tema "Multibiometric"
Dhamala, Pushpa. "Multibiometric Systems". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18895.
Texto completoSepasian, Mojtaba. "Multibiometric security in wireless communication systems". Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/5081.
Texto completoNandakumar, Karthik. "Multibiometric systems fusion strategies and template security /". Diss., Connect to online resource - MSU authorized users, 2008.
Buscar texto completoTitle from PDF t.p. (viewed on Mar. 30, 2009) Includes bibliographical references (p. 210-228). Also issued in print.
Smiley, Garrett. "Investigating the Role of Multibiometric Authentication on Professional Certification E-examination". NSUWorks, 2013. http://nsuworks.nova.edu/gscis_etd/307.
Texto completoJanečka, Petr. "Multimodální biometrický systém kombinující duhovku a sítnici". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234910.
Texto completoGiulia, Droandi. "Secure Processing of Biometric Signals in Malicious Setting". Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1061228.
Texto completoVertamatti, Rodolfo. "Assimetria humana no reconhecimento multibiométrico". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-151923/.
Texto completoCombination of non-redundant biometric sources in multibiometrics overcomes individual source accuracy (monobiometrics). Moreover, two problems in biometrics, noise and impostor attacks, can be minimized by the use of multi-sensor, multi-modal biometrics. However, if similarities are in all traits, as in monozygotic twins (MZ), multiple source processing does not improve performance. To distinguish extreme similitude, epigenetic and environmental influences are more important than DNA inherited. This thesis examines phenotypic plasticity in human asymmetry as a tool to ameliorate multibiometrics. Bilateral Processing (BP) technique is introduced to analyze discordances in left and right trait sides. BP was tested in visible and infrared spectrum images using Cross-Correlation, Wavelets and Artificial Neural Networks. Selected traits were teeth, ears, irises, fingerprints, nostrils and cheeks. Acoustic BP was also implemented for vibration asymmetry evaluation during voiced sounds and compared to a speaker recognition system parameterized via MFCC (Mel Frequency Cepstral Coefficients) and classified by Vector Quantization. Image and acoustic BP gathered 20 samples per biometric trait during one year from nine adult male brothers. For test purposes, left biometrics was impostor to right biometrics from the same individual and vice-versa, which led to 18 entities to be identified per trait. Results achieved total identification in all biometrics treated with BP, compared to maximum 44% of correct identification without BP. This study concludes that bilateral peculiarities improve multibiometric performance and can complement any recognition approach.
Falguera, Fernanda Pereira Sartori [UNESP]. "Fusão de métodos baseados em minúcias e em cristas para reconhecimento de impressões digitais". Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/98675.
Texto completoBiometria refere-se ao uso de características físicas (impressões digitais, íris, retina) ou comportamentais (assinatura, voz) para a identificação humana. As impressões digitais são formadas por cristas e minúcias. As cristas são linhas distribuídas paralelamente com uma orientação e um espaçamento característico e as minúcias representam os vários modos pelos quais uma crista pode se tornar descontínua. Graças a sua universalidade, unicidade e permanência, as impressões digitais tornaram-se as características biométricas mais amplamente utilizadas. Entretanto, considerar o reconhecimento automático de impressões digitais um problema totalmente resolvido é um erro muito comum. Nenhum sistema de reconhecimento de impressões digitais proposto até hoje é infalível, nenhum garante taxas de erro nulas. Imagens de baixa qualidade e com pequena área de sobreposição entre a imagem template e a imagem de consulta ainda representam um desafio para os métodos de reconhecimento de impressões digitais mais utilizados, os métodos baseados no casamento de pontos de minúcias. Uma das maneiras de superar as limitações e melhorar a acurácia de um sistema biométrico é o uso da multibiometria, isto é, a combinação de diferentes tipos de informação em um sistema de reconhecimento biométrico. Neste contexto, esta dissertação de mestrado objetiva aprimorar a acurácia dos sistemas de reconhecimento de impressões digitais por meio da fusão de métodos baseados em minúcias e em cristas. Para tanto, foram implementadas técnicas de fusão no nível de pontuação, classificação e decisão. No nível de pontuação, a fusão propiciou uma redução na taxa de erro igual (EER) de 42,53% em relação ao método mais preciso. Para o nível de classificação, a fusão significou um aumento de 75% na taxa de recuperação correta...
Biometrics refers to the use of physical (fingerprints, iris, retina) or behavioral (signature, voice) characteristics to determine the identity of a person. Fingerprints are formed by ridges and minutiae. The ridges are lines distributed in parallel with an orientation and a characteristic spacing and the minutiae represent the several ways a ridge can become discontinued. As to its universality, uniqueness and permanence, the fingerprints became the most widely used biometric characteristic. However, it is a common mistake to consider the automatic fingerprint recognition as a totally solved problem. No fingerprint recognition system proposed until now is infallible, none of them guarantee null error rates. Poor quality images and when just a small area of overlap between the template and the query images exists are still a complex challenge to the most used fingerprint recognition methods, the methods based on minutiae points matching. One of the possibilities to overcome the limitations and improve the accuracy of a biometric system is the use of multibiometrics, the combination of different kinds of information in a biometric system. In this context, this master thesis aims to improve the accuracy of fingerprint recognition systems through the fusion of minutiae based and ridge based methods. To achieve this, fusion techniques on score, rank and decision levels were implemented. For the score level, the fusion lead to a reduction of the Equal Error Rate to 42.53% compared to the most precise method. For the rank level, the fusion meant an increase of 75% in the Correct Retrieval Rate. And, in the decision level fusion the Recognition Rate changed from 99.25% to 99.75%. The results have demonstrated that the fusion of minutiae based and ridge based methods can represent a significant accuracy improvement for the fingerprint recognition systems.
Nassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques". Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Texto completoHigher Committee for Education Development in Iraq
Kisel, Andrej. "Asmens identifikavimas pagal pirštų atspaudus ir balsą". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101230_093653-59895.
Texto completoThis dissertation focuses on person identification problems and proposes solutions to overcome those problems. First part is about fingperprint feaures extraction algorithm performance evaluaiton. Modifications to a known synthesis algorithm are proposed to make it fast and suitable for performance evaluation. Matching of deformed fingerprints is discussed in the second part of the work. New fingerprint matching algorithm that uses local structures and does not perform fingerprint alignment is proposed to match deformed fingerprints. The use of group delay features of linear prediciton model for speaker identification is proposed in the third part of the work. New similarity metric that uses group delay features is described. It is demonstrated that automatic speaker identification system with proposed features and similarity metric outperforms traditional speaker identification systems. Multibiometrics using fingerprints and voice is adressed in the last part of the dissertation.
Libros sobre el tema "Multibiometric"
Thanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. Multibiometric Watermarking with Compressive Sensing Theory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4.
Texto completoBhanu, Bir y Venu Govindaraju, eds. Multibiometrics for Human Identification. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511921056.
Texto completoBorisagar, Komal R., Rohit M. Thanki y Vedvyas J. Dwivedi. Multibiometric Watermarking with Compressive Sensing Theory: Techniques and Applications. Springer, 2019.
Buscar texto completoBorisagar, Komal R., Rohit M. Thanki y Vedvyas J. Dwivedi. Multibiometric Watermarking with Compressive Sensing Theory: Techniques and Applications. Springer, 2018.
Buscar texto completoA, Karthik Nandakumar &. Anil K. Jain Ross Arun. Handbook Of Multibiometrics. Springer India, 2009.
Buscar texto completoHandbook of Multibiometrics. Boston: Kluwer Academic Publishers, 2006. http://dx.doi.org/10.1007/0-387-33123-9.
Texto completoRoss, Arun A., Karthik Nandakumar y Anil K. Jain. Handbook of Multibiometrics. Springer London, Limited, 2006.
Buscar texto completoBhanu, Bir y Venu Govindaraju. Multibiometrics for Human Identification. Cambridge University Press, 2011.
Buscar texto completoBhanu, Bir y Venu Govindaraju. Multibiometrics for Human Identification. Cambridge University Press, 2011.
Buscar texto completoCapítulos de libros sobre el tema "Multibiometric"
Thanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Introduction". En Multibiometric Watermarking with Compressive Sensing Theory, 1–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_1.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Background Information and Related Works". En Multibiometric Watermarking with Compressive Sensing Theory, 19–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_2.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Issues in Biometric System and Proposed Research Methodology". En Multibiometric Watermarking with Compressive Sensing Theory, 47–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_3.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Wavelet Transform (DWT)". En Multibiometric Watermarking with Compressive Sensing Theory, 65–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_4.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT)". En Multibiometric Watermarking with Compressive Sensing Theory, 91–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_5.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Multibiometric Watermarking Technique Using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD)". En Multibiometric Watermarking with Compressive Sensing Theory, 115–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_6.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Multibiometric Watermarking Technique Using Fast Discrete Curvelet Transform (FDCuT) and Discrete Cosine Transform (DCT)". En Multibiometric Watermarking with Compressive Sensing Theory, 137–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_7.
Texto completoThanki, Rohit M., Vedvyas J. Dwivedi y Komal R. Borisagar. "Conclusions and Future Work". En Multibiometric Watermarking with Compressive Sensing Theory, 161–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73183-4_8.
Texto completoDe Marsico, Maria, Michele Nappi y Daniel Riccio. "Multibiometric People Identification: A Self-tuning Architecture". En Advances in Biometrics, 980–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01793-3_99.
Texto completoVatsa, Mayank, Richa Singh y Afzel Noore. "Context Switching Algorithm for Selective Multibiometric Fusion". En Lecture Notes in Computer Science, 452–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-11164-8_73.
Texto completoActas de conferencias sobre el tema "Multibiometric"
Vertamatti, Rodolfo y Miguel Arjona Ramirez. "Human asymmetry in multibiometric recognition". En 2011 Ieee Workshop On Computational Intelligence In Biometrics And Identity Management - Part Of 17273 - 2011 Ssci. IEEE, 2011. http://dx.doi.org/10.1109/cibim.2011.5949214.
Texto completoRattani, Ajita, D. R. Kisku, Manuele Bicego y Massimo Tistarelli. "Robust Feature-Level Multibiometric Classification". En 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference. IEEE, 2006. http://dx.doi.org/10.1109/bcc.2006.4341631.
Texto completoLazarick, R. "Multibiometric techniques and standards activities". En Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology. IEEE, 2005. http://dx.doi.org/10.1109/ccst.2005.1594883.
Texto completoGhouti, Lahouari y Ahmed A. Bahjat. "Iris fusion for multibiometric systems". En 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2009. http://dx.doi.org/10.1109/isspit.2009.5407577.
Texto completoNandakumar, Karthik y Anil K. Jain. "Multibiometric Template Security Using Fuzzy Vault". En 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems. IEEE, 2008. http://dx.doi.org/10.1109/btas.2008.4699352.
Texto completoSilva, Arnaldo G. A., Herman M. Gomes, Hugo N. Oliveira, Paulo R. B. Lins, Diego F. S. Lima y Leonardo V. Batista. "BioPass-UFPB: a Novel Multibiometric Database". En 2019 International Conference on Biometrics (ICB). IEEE, 2019. http://dx.doi.org/10.1109/icb45273.2019.8987313.
Texto completoSharma, Renu, Sukhendu Das y Padmaja Joshi. "Rank level fusion in multibiometric systems". En 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). IEEE, 2015. http://dx.doi.org/10.1109/ncvpripg.2015.7489952.
Texto completoMonwar, Md Maruf y Marina L. Gavrilova. "Enhancing security through a hybrid multibiometric system". En 2009 IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications (CIB). IEEE, 2009. http://dx.doi.org/10.1109/cib.2009.4925691.
Texto completoTalreja, Veeru, Matthew C. Valenti y Nasser M. Nasrabadi. "Multibiometric secure system based on deep learning". En 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2017. http://dx.doi.org/10.1109/globalsip.2017.8308652.
Texto completoJunfeng, Li. "An Efficient Multibiometric-based Continuous Authentication Scheme". En 2022 IEEE 10th International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2022. http://dx.doi.org/10.1109/iccsnt56096.2022.9972922.
Texto completo