Literatura académica sobre el tema "Nanofils"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanofils".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nanofils"
Patolsky, F. "Des nanofils pour détecter les virus". Revue Française des Laboratoires 2005, n.º 369 (enero de 2005): 15. http://dx.doi.org/10.1016/s0338-9898(05)80063-0.
Texto completoPichon, L., J. P. Landesman y H. Lhermite. "La microscopie confocale : un support de formation en micro- et nano-électronique au CCMO, pôle CFM de Rennes". J3eA 21 (2022): 1007. http://dx.doi.org/10.1051/j3ea/20221007.
Texto completoCroquette, Michael, Francesco Fogliano, Chao Zhang, Cattleya Dousset, Lucas Judéaux, Benjamin Besga, Antoine Reigue, Benjamin Pigeau y Olivier Arcizet. "Explorer la nano-optomécanique avec des nanofils suspendus". Photoniques, n.º 129 (2024): 42–46. https://doi.org/10.1051/photon/202412742.
Texto completoHarmel, J., R. Tan, Ch Capello, Ch Rouabhi, F. Gessinn, J. Schauber, J.-B. Lincelles y M. Respaud. "Les principes de la chimie verte pour une électronique plus durable : une nouvelle approche de la synthèse chimique de nanoparticules d’oxyde de tungstène WO3 intégrées dans un capteur de gaz". J3eA 23 (2024): 1010. http://dx.doi.org/10.1051/j3ea/20241010.
Texto completoLandesman, J. P., L. Pichon y F. Gouttefangeas. "Manipulation de nanofils de silicium à partir de nano robots". J3eA 16 (2017): 1010. http://dx.doi.org/10.1051/j3ea/20171010.
Texto completoZhang, Kaixuan, Wei Fang, Cunjing Lv y Xi-Qiao Feng. "Evaporation of liquid nanofilms: A minireview". Physics of Fluids 34, n.º 2 (febrero de 2022): 021302. http://dx.doi.org/10.1063/5.0082191.
Texto completoAlrajhi, Adnan H., Naser M. Ahmed, Mohd Mahadi Halim, Abeer S. Altowyan, Mohamad Nurul Azmi y Munirah A. Almessiere. "Distinct Optical and Structural (Nanoyarn and Nanomat-like Structure) Characteristics of Zinc Oxide Nanofilm Derived by Using Salvia officinalis Leaves Extract Made without and with PEO Polymer". Materials 16, n.º 13 (21 de junio de 2023): 4510. http://dx.doi.org/10.3390/ma16134510.
Texto completoChen, Zhen, Huiqi Xie, Linfeng Hu, Min Chen y Limin Wu. "Fabrication of novel lamellar alternating nitrogen-doped microporous carbon nanofilm/MoS2 composites with high electrochemical properties". Journal of Materials Chemistry A 5, n.º 43 (2017): 22726–34. http://dx.doi.org/10.1039/c7ta07136a.
Texto completoHuo, Jiabin, Wei Li y Teng Wang. "Effect of Cr Doping Concentration on the Structural, Optical, and Electrical Properties of Lead Sulfide (PbS) Nanofilms". Coatings 9, n.º 6 (10 de junio de 2019): 376. http://dx.doi.org/10.3390/coatings9060376.
Texto completoZhang, Juan, Donghui Li y Bo Zhang. "Study on Cavitation and Tribological of TiO2 Nano-Film on Bearing Pads Surface". Journal of Nanoscience and Nanotechnology 21, n.º 12 (1 de diciembre de 2021): 5906–11. http://dx.doi.org/10.1166/jnn.2021.19506.
Texto completoTesis sobre el tema "Nanofils"
Maras, Emile. "Du nanofil bimétallique isolé à la distribution de nanofils codéposés : une vision d'ensemble(s)". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00765965.
Texto completoDiarra, Mamadou. "Etude théorique de nanofils semiconducteurs". Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00432564.
Texto completoHorvath, Christophe. "Réalisation de nanofils de protéines". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00647308.
Texto completoDiarra, Mamadou Marcel. "Étude théorique de nanofils semiconducteurs". Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10010/document.
Texto completoRecent breakthroughs in the growth of semiconductor nanowires (SNWs) have opened up great opportunities for nanoscale device applications. SNWs remain semiconducting independent oftheir diameter and orientation, giving the ability to control their properties by doping. Therefore a large number of experimental works have addressed the problem of doping and of its modulation in SNWs. While there is no doubt that p- and n-type SNWs can be produced, the question of how their electrical conductivity depends on the doping level remains largely open. ln fact, most of the works showing good transport properties concern SNWs doped with high impurity concentration, near or above the Mott density. ln order to investigate the doping efficiency in SNWs, we present calculations of the electronic structure of donor and acceptor impurities in Si nanowires. We show that their ionization energy increases due to the confinement, the quantum confinement at small sizes (diameter < 5 nm) and above aIl the so-called dielectric confinement which occurs when there is an important dielectric mismatch between the wire and its surrounding. For SNWs embedded in a material with a low dielectric constant, we obtain that the impurities cannot be ionized at room temperature even for diameters up to several tens of nanometers. We explain the origin of this behavior by considering the effect of the impurity potential and of the self-energy of the carrier, and we make predictions for the ionization energy in different configurations. These results allow us to conclude on the necessity to use heavy doping to obtain good electrical properties in SNWs
Diarra, Mamadou Marcel. "Étude théorique de nanofils semiconducteurs". Electronic Thesis or Diss., Lille 1, 2009. http://www.theses.fr/2009LIL10010.
Texto completoRecent breakthroughs in the growth of semiconductor nanowires (SNWs) have opened up great opportunities for nanoscale device applications. SNWs remain semiconducting independent oftheir diameter and orientation, giving the ability to control their properties by doping. Therefore a large number of experimental works have addressed the problem of doping and of its modulation in SNWs. While there is no doubt that p- and n-type SNWs can be produced, the question of how their electrical conductivity depends on the doping level remains largely open. ln fact, most of the works showing good transport properties concern SNWs doped with high impurity concentration, near or above the Mott density. ln order to investigate the doping efficiency in SNWs, we present calculations of the electronic structure of donor and acceptor impurities in Si nanowires. We show that their ionization energy increases due to the confinement, the quantum confinement at small sizes (diameter < 5 nm) and above aIl the so-called dielectric confinement which occurs when there is an important dielectric mismatch between the wire and its surrounding. For SNWs embedded in a material with a low dielectric constant, we obtain that the impurities cannot be ionized at room temperature even for diameters up to several tens of nanometers. We explain the origin of this behavior by considering the effect of the impurity potential and of the self-energy of the carrier, and we make predictions for the ionization energy in different configurations. These results allow us to conclude on the necessity to use heavy doping to obtain good electrical properties in SNWs
Rosaz, Guillaume. "Intégration 3D de nanofils Si-SiGe pour la réalisation de transistors verticaux 3D à canal nanofil". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00981971.
Texto completoDa, Col Sandrine. "Parois magnétiques dans les nanofils cylindriques". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY083/document.
Texto completoThe underlying physics of magnetic domain wall motion is currently arousing a strong interest, enhanced by the possibilities of applications into magnetic memories.Domain walls are mostly studied in nanostripes made by lithography.Nevertheless, a cylindrical geometry would involve domain walls with different structures and dynamical behaviors that could resolve issues, such as the speed limitation observed in nanostripes.Their elaboration process, via the fabrication of nanoporous template followed by the electrolytic filling of the pores, leads to self-organized nanowires with high aspect ratio and weak distribution in diameter.In spite of their undeniable interest, for now only very few domain walls studies have been conducted on such cylindrical systems.This thesis hence intends to contribute to the subject.Part of the thesis have been devoted to the setting and development of some steps of the fabrication process : reduction of membrane porosity, modulation of the pore diameter, electrodeposition of a magnetic alloy.These geometrical and structural adjustments of the nanowires have been used to study several facets of domain walls in nanowires.In the first place, an experimental way to reduce the magnetostatic interactions that could disturb domain wall propagation in dense arrays of nanowires have been proposed.Its efficency have been demonstrated through array hysteresis cycles, on the domain wall nucleation that occurs at nanowires extremities during magnetization reversal.Others pinning mechanisms have then been evidenced by analyzing initial magnetization curves measured after a controlled nucleation of domain walls.However, the observation of propagation fields of a few milliteslas by magnetic force microscopy (MFM) on individual nanowires opens the way to dynamical studies on such systems.At last, the observation of domain wall internal structure by X-ray magnetic circular dichroism in photoemission electron microscopy (XMCD-PEEM) evidenced the two types of domain walls theoretically and numerically predicted, for which very different mobilities are expected
Chen, Wanghua. "Modélisation de la croissance des nanofils de Si et métrologie à l'échelle atomique de la composition des nanofils". Phd thesis, Université de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00651352.
Texto completoSinghal, Dhruv. "Forêt de nanofils semiconducteurs pour la thermoélectricité". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY016/document.
Texto completoThermoelectric conversion has gained renewed interest based on the possibilities of increasing the efficiencies while exploiting the size effects. For instance, nanowires theoretically show increased power factors along with reduced phonon transport owing to confinement and/or size effects. In this context, the diameter of the nanowires becomes a crucial parameter to address in order to obtain high thermoelectric efficiencies. A usual approach is directed towards reducing the phononic thermal conductivity in nanowires by achieving enhanced boundary scattering while reducing diameters.In this work, thermal characterisation of a dense forest of silicon, germanium, silicon-germanium and Bi2Te3 alloy nanowires is done through a sensitive 3ω method. These forest of nanowires for silicon, germanium and silicon-germanium alloy were grown through bottom-up technique following the Vapour-Liquid-Solid mechanism in Chemical vapour deposition. The template-assisted and gold catalyst growth of nanowires with controlled diameters was achieved with the aid of tuneable nanoporous alumina as templates. The nanowires are grown following the internal geometry of the nanopores, in such a case the surface profile of the nanowires can be modified according to the fabricated geometry of nanopores. Benefiting from this fact, high-density growth of diameter-modulated nanowires was also demonstrated, where the amplitude and the period of modulation can be easily tuned during the fabrication of the templates. Even while modulating the diameters during growth, the nanowires were structurally characterised to be monocrystalline through transmission electron microscopy and X-ray diffraction analysis.The thermal characterisation of these nanowires revealed a strong diameter dependent decrease in the thermal conductivity, where the reduction was predominantly linked to strong boundary scattering. The mean free path contribution to the thermal conductivity observed in the bulk of fabricated nanowire materials vary a lot, where Bi2Te3 has strikingly low mean free path distribution (0.1 nm to 15 nm) as compared to the other materials. Even then, reduced thermal conductivities (~40%) were observed in these alloys attributed to boundary and impurity scattering. On the other hand, silicon and germanium have higher thermal conductivity with a larger mean free path distribution. In these nanowires, a significant reduction (10-15 times) was observed with a strong dependence on the size of the nanowires.While size effects reduce the thermal conductivity by enhanced boundary scattering, doping these nanowires can incorporate mass-difference scattering at atomic length scales. The temperature dependence of thermal conductivity was determined for doped nanowires of silicon to observe a reduction in thermal conductivity to a value of 4.6 W.m-1K-1 in highly n-doped silicon nanowires with 38 nm diameter. Taking into account the electrical conductivity and calculated Seebeck coefficient, a ZT of 0.5 was observed. With these significant increase in the efficiency of silicon as a thermoelectric material, a real practical application to devices is not far from reality
Jamond, Nicolas. "Des nanofils Nitrure à la génération piézoélectrique". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066511/document.
Texto completoNitride nanowires are a promising material for the fabrication of efficient and compact piezogenerators. Their tremendous piezoelectric and mechanical properties give them the ability to convert efficiently mechanical energy into electrical energy. The piezoelectric material studied in this thesis is GaN, synthetised as nanowires by PA-MBE. Thanks to an adapted AFM résiscope, we show the great potential of nitride nanowires for piezogeneration and the correlation between the polarity of the nanostructure, its deformation and the establishment of the piezopotential. We also study the harvesting efficiency of the nanostructures’ polarization, through a nanometric Schottky contact. Due to scale effects, this Schottky nanocontact shows a reduced barrier height and resistance, which lead to an enhanced conduction and thus to a better harvesting of the piezoelectric energy generated by the GaN nanowires. Based on the understanding of those mechanisms, we have built a piezogenerator integrating a vertical array of p-type GaN nanowires, embedded in HSQ resist and with their top connected by a Pt metallic electrode, leading to a Schottky contact. This prototype delivered a power density of about 12,7 mW.cm-3, which is the state of the art for GaN nanowires based piezogenerator
Libros sobre el tema "Nanofils"
Singh, Navdeep y Debjyoti Banerjee. Nanofins. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8532-2.
Texto completoGovindaraj, A., C. N. Ram Rao y Leela Srinivas Panchakarla. Nanotubes and Nanowires. Royal Society of Chemistry, The, 2020.
Buscar texto completoGovindaraj, A., C. N. Ram Rao y Leela Srinivas Panchakarla. Nanotubes and Nanowires. Royal Society of Chemistry, The, 2020.
Buscar texto completoSemiconducting Silicon Nanowires for Biomedical Applications. Elsevier Science & Technology, 2021.
Buscar texto completoSemiconducting Silicon Nanowires for Biomedical Applications. Woodhead Publishing, 2018.
Buscar texto completoSemiconducting Silicon Nanowires for Biomedical Applications. Elsevier Science & Technology, 2014.
Buscar texto completoSemiconductor Nanowires I: Growth and Theory. Elsevier Science & Technology, 2015.
Buscar texto completoJagadish, Chennupati, Anna Fontcuberta i. Morral y Shadi A. Dayeh. Semiconductor Nanowires I: Growth and Theory. Elsevier Science & Technology Books, 2015.
Buscar texto completoMagnetic Nano- and Microwires: Design, Synthesis, Properties and Applications. Elsevier Science & Technology, 2015.
Buscar texto completoSingh, Navdeep y Debjyoti Banerjee. Nanofins: Science and Applications. Springer, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Nanofils"
Singh, Navdeep y Debjyoti Banerjee. "Introduction". En Nanofins, 1–21. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8532-2_1.
Texto completoSingh, Navdeep y Debjyoti Banerjee. "Nanofins: Science". En Nanofins, 23–50. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8532-2_2.
Texto completoSingh, Navdeep y Debjyoti Banerjee. "Nanofins: Applications". En Nanofins, 51–64. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8532-2_3.
Texto completoSingh, Navdeep y Debjyoti Banerjee. "Nanofins: Implications". En Nanofins, 65–70. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8532-2_4.
Texto completoKegl, Tina, Anita Kovač Kralj, Marko Kegl y Breda Kegl. "Nanofuels". En Nanomaterials for Environmental Application, 63–105. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54708-0_4.
Texto completoCapek, Ignác. "Nanofield". En Noble Metal Nanoparticles, 1–123. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56556-7_1.
Texto completoKulkarni, Kavita, Yogesh Chendake y Anand Kulkarni. "Plant-Based Antimicrobial Nanofilms". En Innovations in Green Nanoscience and Nanotechnology, 105–20. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003319153-6.
Texto completoHua, Yu-Chao, Dao-Sheng Tang y Bing-Yang Cao. "Thermal Transport in Nanofilms". En 21st Century Nanoscience – A Handbook, 10–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780367333003-10.
Texto completoOnah, Ejembi J. "Nanofilms and the Emerging Nanotechnology". En ACS Symposium Series, 384–98. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0918.ch027.
Texto completoRudolf, Rebeka, Peter Majerič, Vojkan Lazić y Karlo T. Raić. "Nanofoils in Dental Joining Practice". En Advanced Dental Metallic Materials, 165–78. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47351-7_6.
Texto completoActas de conferencias sobre el tema "Nanofils"
Reyes-Barragán, Sergio, Ulises Ruíz-Corona, Javier Silva-Barranco y Rubén Ramos-García. "Evidences of Photoacustics Effects in Microparticle Manipulation Using a CW Modulated Laser". En Latin America Optics and Photonics Conference, Tu5A.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/laop.2024.tu5a.2.
Texto completoZhou, Hongqiang, Chongli Zhao, Tianlong Man y Yuhong Wang. "Triple correlated wavelength selective hybrid meta-holography". En Digital Holography and Three-Dimensional Imaging, W1B.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w1b.1.
Texto completoXiaotong, L., Xinpu Zhang, L. Zeliu, Jiamai Ren, Yisong Wang, Fenglin Zhang y Wei Peng. "Transfer of Multimaterial Nanofilms Based on Hydroxide Catalysis Bonding Technology". En 2024 22nd International Conference on Optical Communications and Networks (ICOCN), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/icocn63276.2024.10648369.
Texto completoZeboudj, Asmaa, Mokhtar Zardali, Asmaa Tadji y Saad Hamzaoui. "Simulation of ZnO Nanofils as Applications for Acetone Gas Sensors". En ECSA 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/ecsa-10-16027.
Texto completoBollavaram, Praveen K., Muhammad M. Rahman y R. Asmatulu. "Lightning Strike Protection and EMI Shielding of Fiber Reinforced Composite Using Gold and Silver Nanofilms". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88639.
Texto completoMelnikova, Y. I., A. A. Scherbovich, I. V. Koktysh, O. S. Kulakovich, A. A. Ramanenka y S. A. Maskevich. "THE OPTICAL PROPERTIES STUDY OF THE SOLID PHASE FORMED BASED ON VARIOUS STRUCTURES SILVER NANOFILMS, OPTIMIZED FOR THE IMMUNOCHEMICAL TEST SYSTEMS". En SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-69-72.
Texto completoAigner, Andreas, Juan Wang, Andreas Tittl, Stefan A. Maier y Haoran Ren. "Out-of-plane symmetry-protected bound states in the continuum in a plasmonic nanofin metasurface". En Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cwp16h_01.
Texto completoTerris, Damian, Karl Joulain y Denis Lemonnier. "Heat Pulse Propagation in Silicon Nanostructures by Solving Phonon Transport Equation". En ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52220.
Texto completoMa, Weigang, Tingting Miao y Xing Zhang. "Thermal and Electrical Transport Characteristics of Polycrystalline Gold Nanofilms". En 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22328.
Texto completoLiang, Huawei, Shuangchen Ruan, Min Zhang y Hong Su. "Terahertz metal nanofilm waveguides". En 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013194.
Texto completoInformes sobre el tema "Nanofils"
Junhang Dong, Hai Xiao, Xiling Tang, Hongmin Jiang, Kurtis Remmel y Amardeep Kaur. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1060495.
Texto completoArias, Eduardo, Ivana Moggio y Ronald Ziolo. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2014. http://dx.doi.org/10.21236/ada619975.
Texto completo