Literatura académica sobre el tema "Nanoparticle formation"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanoparticle formation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Nanoparticle formation"

1

Shannahan, Jonathan. "The biocorona: a challenge for the biomedical application of nanoparticles." Nanotechnology Reviews 6, no. 4 (August 28, 2017): 345–53. http://dx.doi.org/10.1515/ntrev-2016-0098.

Texto completo
Resumen
AbstractFormation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle’s physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity f
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Karim, Mohammad Ziaul, Md Eaqub Ali, and Sharifah Bee Abd Hamid. "Temperature Induced Formation of Goethite from Magnetite." Advanced Materials Research 1109 (June 2015): 191–94. http://dx.doi.org/10.4028/www.scientific.net/amr.1109.191.

Texto completo
Resumen
Over the past few decades, magnetite nanoparticle has been profusely because of their wide range of applications. The co-precipitation method is the simplest and suitable method for the preparation of this nanoparticle. It goes through several reaction steps for the formation of various phases of magnetic nanoparticles. Goethite (FeO(OH)), is one of the intermediates, and it drastically suppressed with the magnetic properties of the Fe oxide phase. In our study, it was shown that at 30°C temperature pure magnetic nanoparticles is formed. But when precipitation temperature is increase to 80°C,
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

SOBHAN, M. A., M. AMS, M. J. WITHFORD, and E. M. GOLDYS. "FORMATION OF COLLOIDAL GOLD NANOPARTICLES BY USING FEMTOSECOND LASER ABLATION." International Journal of Nanoscience 08, no. 01n02 (February 2009): 209–12. http://dx.doi.org/10.1142/s0219581x09005712.

Texto completo
Resumen
Colloidal gold nanoparticles were produced by irradiating a gold disc with a femtosecond laser beam in pure deionized water. Variation of laser fluence between 38 and 330 J/cm2 was used to control the nanoparticle size distribution. The nanoparticles produced were spherically shaped with average diameter between 9 and 10 nm. The effect of ablation time on the nanoparticle production efficiency and size distribution was also studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Fomenko, Elena, Igor Altman, and Igor E. Agranovski. "Effect of External Charging on Nanoparticle Formation in a Flame." Materials 14, no. 11 (May 28, 2021): 2891. http://dx.doi.org/10.3390/ma14112891.

Texto completo
Resumen
This paper attempts to demonstrate the importance of the nanoparticle charge in the synthesis flame, for the mechanism of their evolution during formation processes. An investigation was made of MgO nanoparticles formed during combustion of magnesium particles. The cubic shape of nanoparticles in an unaffected flame allows for direct interpretation of results on the external flame charging, using a continuous unipolar emission of ions. It was found that the emission of negative ions applied to the flame strongly affects the nanoparticle shape, while the positive ions do not lead to any noticea
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ahmadi, R., Madaah Hosseini, and A. Masoudi. "Avrami behavior of magnetite nanoparticles formation in co-precipitation process." Journal of Mining and Metallurgy, Section B: Metallurgy 47, no. 2 (2011): 211–18. http://dx.doi.org/10.2298/jmmb110330010a.

Texto completo
Resumen
In this work, magnetite nanoparticles (mean particle size about 20 nm) were synthesized via coprecipitation method. In order to investigate the kinetics of nanoparticle formation, variation in the amount of reactants within the process was measured using pH-meter and atomic absorption spectroscopy (AAS) instruments. Results show that nanoparticle formation behavior can be described by Avrami equations. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed to study the chemical and morphological characterization of nanoparticles. Some simplifying assumptions were emp
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Majerič, Peter, and Rebeka Rudolf. "Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles—Review." Materials 13, no. 16 (August 7, 2020): 3485. http://dx.doi.org/10.3390/ma13163485.

Texto completo
Resumen
In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows ho
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sidorova, Elena N., Ella L. Dzidziguri, Yulia P. Vinichenko, Dmitriy Yu Ozherelkov, Alexander S. Shinkaryov, Alexander A. Gromov, and Anton Yu Nalivaiko. "Metal Nanoparticles Formation from Nickel Hydroxide." Materials 13, no. 20 (October 21, 2020): 4689. http://dx.doi.org/10.3390/ma13204689.

Texto completo
Resumen
In this study, the mechanism of nickel nanoparticle formation from its hydroxide was analyzed. Metallic nickel nanoparticles were obtained through the hydroxide’s reduction under hydrogen. Nickel hydroxides were produced from nickel (II) nitrate hexahydrate and NaOH by deposition under various initial conditions. The influence of washing treatment on the dispersion of obtained nickel powders was studied. The washing procedure of precipitates was carried out by centrifugation, ultrasonic treatment, and decantation. X-ray diffractometry, transmission electron microscopy, low-temperature nitrogen
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Kun, Yuqing Zhang, Lincun Jiang, Zhiyuan Li, Xin Wang, Jinwei Zhai, and Siao Zhang. "Understanding the effect of ambient gas pressure on the nanoparticle formation in electrically exploding wires." Physics of Plasmas 30, no. 3 (March 2023): 033511. http://dx.doi.org/10.1063/5.0120712.

Texto completo
Resumen
In this paper, a computational model characterizing the preparation of metallic nanoparticles by electrically exploding wires from the onset of current flowing through the wire to the final moment of nanoparticle formation in a gaseous environment is constructed. The computational model consists of a 1D magnetohydrodynamic model, a simplified magnetohydrodynamic model with two-temperature approximation, and a set of general dynamic equations based on the nodal approach, corresponding to the phase transition stage, plasma evolution stage, and nanoparticle growth stage, respectively. The numeric
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Borchardt, John K. "Controlling nanoparticle formation." Materials Today 8, no. 6 (June 2005): 15. http://dx.doi.org/10.1016/s1369-7021(05)70927-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lee, Hwankyu. "Molecular Modeling of Protein Corona Formation and Its Interactions with Nanoparticles and Cell Membranes for Nanomedicine Applications." Pharmaceutics 13, no. 5 (April 29, 2021): 637. http://dx.doi.org/10.3390/pharmaceutics13050637.

Texto completo
Resumen
The conformations and surface properties of nanoparticles have been modified to improve the efficiency of drug delivery. However, when nanoparticles flow through the bloodstream, they interact with various plasma proteins, leading to the formation of protein layers on the nanoparticle surface, called protein corona. Experiments have shown that protein corona modulates nanoparticle size, shape, and surface properties and, thus, influence the aggregation of nanoparticles and their interactions with cell membranes, which can increases or decreases the delivery efficiency. To complement these expe
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Nanoparticle formation"

1

Maguire, Steven. "Magnetic field control of silver nanoparticle formation." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27390.

Texto completo
Resumen
Silver nanoparticles can be readily generated in micellar environments by ketyl radicals formed from the photoreduction of benzophenone in the presence of a suitable hydrogen donor. The yield of these ketyl radicals can be increased by extending the lifetime of the triplet radical pair through Zeeman splitting of the triplet sublevels in an externally applied magnetic field. This provides control over the rate of photogeneration of nanoparticles under very mild conditions. The rate of photogeneration can be monitored by the distinctive surface plasmon resonance absorption around 420 nm. In thi
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Martin, Christopher Paul. "Pattern formation in self-organised nanoparticle assemblies." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/10772/.

Texto completo
Resumen
An extremely wide variety of self-organised nanostructured patterns can be produced by spin-casting solutions of colloidal nanoparticles onto solid substrates. This is an experimental regime that is extremely far from thermodynamic equilibrium, due to the rapidity with which the solvent evaporates. It is the dynamics of flow and evaporation that lead to the formation of the complex structures that are observed by atomic force microscopy (AFM). The mechanisms involved in the formation of these patterns are not yet fully understood, largely because it is somewhat challenging to directly observe t
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Haolan. "Nanoparticle formation through the liquid arc method." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613366.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Haubold, Danny, Annett Reichhelm, Alexander Weiz, Lars Borchardt, Christoph Ziegler, Lydia Bahrig, Stefan Kaskel, Michael Ruck, and Alexander Eychmüller. "The Formation and Morphology of Nanoparticle Supracrystals." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209752.

Texto completo
Resumen
Supracrystals are highly symmetrical ordered superstructures built up from nanoparticles via self-assembly. While the NP assembly has been intensively investigated, the formation mechanism is still not understood. To shed some light onto the formation mechanism, we are using one of the most common supracrystal morphologies, the trigonal structures, as a model system to investigate the formation process in solution. To explain the formation of the trigonal structures and determining the size of the supracrystal seeds formed in solution, we introduce the concept of substrate-affected growth. Fur
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Vanella, Andrea. "Nanoparticle formation in nanoporous structures and applications." Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1210313.

Texto completo
Resumen
In the recent years the scientific community demonstrates an increasing interest in the study of nanoparticles and their properties, such as interaction with a surface and the adsorption/desorption characteristic. The latte properties, as well the formation and growth of nanoparticles, can be controlled by a proper light source. On the other hand having a much larger specific surface to increase the adsorbed amount of atoms, is a desirable characteristic of the system. That is on of the reason of the large exploitation of nanoporous material in many different research fields. Porous glass pres
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Voloshko, Andrey. "Nanoparticle formation by means of spark discharge at atmospheric pressure." Thesis, Saint-Etienne, 2015. http://www.theses.fr/2015STET4011/document.

Texto completo
Resumen
Au cours de la dernière décennie, les nanoparticules métalliques ont trouvé de nombreuses applications dans divers domaines tels que l'optique, la photonique, la catalyse, la fabrication de matériaux, les énergies renouvelables, l'électronique, la médecine et même les cosmétiques. Les nouveaux développements de ces applications nécessitent des méthodes de synthèse de nanoparticules fiables donnant une grande quantité de nanoparticules aux propriétés spécifiques. Les méthodes à base de plasma, tels que des décharges d'étincelles et d’arcs sont parmi les plus prometteuses car elles permettent un
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Huo, Zhijie. "Modelling of Soot Nanoparticle Formation in Turbulent Flames." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/24858.

Texto completo
Resumen
Soot emission from hydrocarbon fuel combustion is a major source of particulate pollution. The increasingly stringent regulations on emissions have necessitated the developments of soot models to aid designs of combustion devices with cleaner performance. Such models will also make valuable contributions in designing and optimising processes that produce beneficial carbonaceous particulates, e.g. carbon black plants and processes requiring enhanced soot-induced radiation. The present work aims to develop a detailed soot model and implements the model in the sparse multiple mapping conditionin
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tobler, Dominique Jeanette. "Molecular pathways of silica nanoparticle formation and biosilicification." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/359/.

Texto completo
Resumen
Biosilicification and silica nanoparticle formation occur in many modem terrestrial environments and they also played an important role in ancient geological settings. This thesis presents results from (i) field studies in Icelandic geothermal waters that aimed at quantifying the parameters that control the growth rate and texture of sinters and the diversity and silicification of associated microbial communities and (ii) lab studies that focussed on the kinetics and mechanisms of silica nanoparticle forination under conditions mimicking natural geothermal environments. The analysis of growth
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lin, Jiashu. "La formation et le transport des particules dans le plasma froid." Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3029.

Texto completo
Resumen
Les plasma poudreux sont des plasmas qui contiennent des particules solides dont les tailles vont quelques nanomètres à quelques dizaines de micromètres. La présence de ces particules solides, dans les plasmas, a été découverte dans les procédés de l'industrie de microélectronique. Les particules dans le plasma étaint considérées comme la source principale de la contamination de ces procédés. Les premiers travaux de recherche était focalisées sur les méthodes et moyens de les éliminer et d'empêcher leur formation. Suite à l'identification des différentes phase de formation et la découverte de
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Marichal, Laurent. "Interactions protéines-nanoparticules : émergence de nouveaux facteurs déterminant la formation de la couronne de protéines." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS100/document.

Texto completo
Resumen
Les nanoparticules sont de plus en plus présentes dans notre quotidien et leur présence dans les organismes vivants est aujourd’hui avérée. Aussi, dans un milieu biologique, des protéines recouvrent spontanément la surface des nanoparticules pour former une couronne de protéines. Suivant la composition de cette couronne, une nanoparticule acquiert une "identité biologique" spécifique qui peut conditionner sa biodistribution ainsi que son éventuelle toxicité.De nombreuses zones d’ombre persistent quant à la connaissance des mécanismes d’adsorption des protéines sur les nanoparticules. Deux cara
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Nanoparticle formation"

1

Nicola, Pinna, ed. Metal oxide nanoparticles in organic solvents: Synthesis, formation, assembly and application. Heidelberg: Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Markus, Winterer, Schmechel Roland, Schulz Christof, and SpringerLink (Online service), eds. Nanoparticles from the Gasphase: Formation, Structure, Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nechaev, Vladimir, Andrey Shuba, Stanislav Gridnev, and Vitaliy Topolov. Dimensional effects in phase transitions and physical properties of ferroics. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1898400.

Texto completo
Resumen
The monograph presents mathematical methods and a set of mathematical models describing, within the framework of phenomenological theory, phase transitions in 0D-. 1D-, 2D-, 3D-dimensional ferroelectrics, ferroelastics, ferromagnets and their static and dynamic physical properties near the phase transition point. The influence of the parameters characterizing the ferroic sample and its interaction with the environment on the features of the phase transition, phase transition temperature shift, heat capacity, generalized susceptibilities is analyzed. Mathematical models of multilayer thin-film
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Klinkova, Anna. Nanochemistry: Chemistry of Nanoparticle Formation and Interactions. Elsevier, 2023.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Klinkova, Anna. Nanochemistry: Chemistry of Nanoparticle Formation and Interactions. Elsevier, 2023.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Blunt, MO, A. Stannard, E. Pauliac-Vaujour, CP Martin, Ioan Vancea, Milovan Suvakov, Uwe Thiele, Bosiljka Tadic, and P. Moriarty. Patterns and pathways in nanoparticle self-organization. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.8.

Texto completo
Resumen
This article reviews relatively recent forms of self-assembly and self-organization that have demonstrated particular potential for the assembly of nanostructured matter, namely biorecognition and solvent-mediated dynamics. It first considers the key features of self-assembled and self-organized nanoparticle arrays, focusing on the self-assembly of nanoparticle superlattices, the use of biorecognition for nanoparticle assembly, and self-organizing nanoparticles. It then describes the mechanisms and pathways for charge transport in nanoparticle assemblies, with particular emphasis on the relati
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Winterer, Markus, Axel Lorke, Roland Schmechel, and Christof Schulz. Nanoparticles from the Gasphase: Formation, Structure, Properties. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Winterer, Markus, Axel Lorke, and Roland Schmechel. Nanoparticles from the Gasphase: Formation, Structure, Properties. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Niederberger, Markus, and Nicola Pinna. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application. Springer London, Limited, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Springer, Markus Niederberger, and Nicola Pinna. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Nanoparticle formation"

1

Pierre, Alain C. "Nanoparticle Formation." In Introduction to Sol-Gel Processing, 165–208. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38144-8_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Yang, Yuehai, and Wenzhi Li. "Gas-Phase Nanoparticle Formation." In Encyclopedia of Nanotechnology, 1303–8. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yang, Yuehai, Wenzhi Li, Elmar Kroner, Eduard Arzt, Bharat Bhushan, Laila Benameur, Liu Wei, et al. "Gas Phase Nanoparticle Formation." In Encyclopedia of Nanotechnology, 929–34. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zolotko, Andrey N., Nikolay I. Poletaev, Jacob I. Vovchuk, and Aleksandr V. Florko. "Nanoparticle Formation by Combustion Techniques." In Gas Phase Nanoparticle Synthesis, 123–56. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Patel, Pal, and Ashutosh Kumar. "CHAPTER 3. Factors Affecting a Nanoparticle's Protein Corona Formation." In Nanoparticle–Protein Corona, 61–79. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016308-00061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Baweja, Lokesh. "CHAPTER 7. Computer Simulations for Understanding Nanoparticle-biomolecule Corona Formation." In Nanoparticle–Protein Corona, 191–203. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016308-00191.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Vakhrushev, Alexander V. "Numerical Simulation of Nanoparticle Formation." In Computational Multiscale Modeling of Multiphase Nanosystems, 125–86. Toronto ; New Jersey : Apple Academic Press, 2017. | Series: Innovations in chemical physics and mesoscopy: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315207445-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Altman, Igor S., Peter V. Pikhitsa, and Mansoo Choi. "Key Effects in Nanoparticle Formation by Combustion Techniques." In Gas Phase Nanoparticle Synthesis, 43–67. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Boulmer-Leborgne, Chantal, Ratiba Benzerga, and Jacques Perrière. "Nanoparticle Formation by Femtosecond Laser Ablation." In Laser-Surface Interactions for New Materials Production, 125–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03307-0_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wong, Tin Wui, and Philipp John. "Advances in Spray Drying Technology for Nanoparticle Formation." In Handbook of Nanoparticles, 329–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15338-4_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Nanoparticle formation"

1

Heszler, Peter, and Lars Landstrom. "Laser-induced nanoparticle formation." In Microtechnologies for the New Millennium 2003, edited by Robert Vajtai, Xavier Aymerich, Laszlo B. Kish, and Angel Rubio. SPIE, 2003. http://dx.doi.org/10.1117/12.498569.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Xinwei, and Xianfan Xu. "The Formation Process of Nanoparticles in Laser Materials Interaction." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33857.

Texto completo
Resumen
Nanoparticles formed in short pulsed laser materials interaction have strong effects on laser micro-machining, material surface processing, and thin film deposition. In this work, Molecular Dynamics (MD) simulations are conducted to attain physical origins and the nature of nanoparticle formation in picosecond laser materials interaction. The MD simulation reveals that nanoparticles originate from an intense vapor phase explosion process occurring after laser heating. This phase explosion is driven by an accumulated high pressure of the order of 30 MPa in the near surface region. It is observe
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Compton, J. M., S. K. Cotts, D. E. Kranbuehl, E. Espuche, L. David, Alberto D’Amore, Domenico Acierno, and Luigi Grassia. "Metal Nanoparticle formation in PEI." In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2988971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Keramati, Hadi, Mohammad Zabetian, Mohammad Hassan Saidi, and Ali Asghar Mozafari. "Experimental Characterization of Stabilized Suspensions Caused by Formation of Nanoparticle Halos." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21748.

Texto completo
Resumen
Suspension flow has an important role in various applications such as paint, material and pharmaceutical industries. Settling is considered as a resisting phenomenon in the processes dealing with suspensions. Using nanoparticles as an additive to micro-particulates has been studied in limited studies. This work presents an experimental investigation to assess the effectiveness of nanoparticles in reduction of suspension settling. Microscopic imaging and transmission measurement were used to analyze the stability factors in a container. Transmission analysis revealed that presence of nanopartic
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sasaki, Sousuke, Yoshio Tonegawa, and Toru Nakajima. "Potential of Nanoparticle Formation by Vehicles." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-0622.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Matar, Omar K. "Pattern Formation in Evaporating Drops With and Without Nanoparticles." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58292.

Texto completo
Resumen
We show how asymptotic reduction techniques are used to model the motion of sessile droplets in the presence of heat transfer, evaporation and nanoparticles. When nanoparticles are present in the drop, lubrication theory is used to model the contact line dynamics and the evolution of the nanoparticle concentration. The model accounts for the effects of surface tension, Marangoni stresses, evaporation and intermolecular forces; the effect of nanoparticles on the latter endows the film with structural disjoining pressure forces near the contact line. Our numerical simulations catalogue the diffe
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Steinbrück, Andrea, Andrea Csaki, Kathrin Ritter, Martin Leich, J. Michael Köhler, Wolfgang Fritzsche, Wolfgang Fritzsche, and Frank Bier. "Formation Of Defined Nanoparticle Constructs Containing Gold, Silver, And Gold-Silver Nanoparticles." In DNA-BASED NANODEVICES: International Symposium on DNA-Based Nanodevices. AIP, 2008. http://dx.doi.org/10.1063/1.3012290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Adleman, James R., Helge Eggert, Karsten Buse, and Demetri Psaltis. "Holographic grating formation in silver nanoparticle suspensions." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4627575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Yang, Y. C., C. H. Wang, T. Y. Yang, Y. Hwu, C. H. Chen, J. H. Je, and G. Margaritondo. "Synchrotron X-Ray Induced Gold Nanoparticle Formation." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436333.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zhu, Youyi, Peng Yu, and Jian Fan. "Study on Nanoparticle Stabilized Emulsions for Chemical Flooding Enhanced Oil Recovery." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21456-ms.

Texto completo
Resumen
Abstract Chemical flooding is one of enhanced oil recovery (EOR) methods. The primary mechanism of EOR of chemical flooding is interfacial tension reduction, mobility ratio improvement and wettability changes. Recent studies showed that enhancing emulsification performance was beneficial to improve oil displacement efficiency. The formation of Pickering emulsion by nanoparticles could greatly improve the emulsifying performance. Using nanoparticles stabilized emulsions for chemical EOR application is a novel method. In this study, six different types of nanoparticles were selected, including h
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Nanoparticle formation"

1

Cheng, M. D. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/893273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cheng, M. D. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/839150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cheng, Meng-Dawn. PHYSICO-CHEMICAL DYNAMICS OF NANOPARTICLE FORMATION DURING LASER DECONTAMINATION AND CHARACTERIZATION. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/835402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cheng, Meng-Dawn. PHYSICO-CHEMICAL DYNAMICS OF NANOPARTICLE FORMATION DURING LASER DECONTAMINATION AND CHARACTERIZATION. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/835403.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Seferis, James C. Nanoparticle Control of Void Formation and Expansion in Polymeric and Composite Systems. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada464995.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Xi, Yunping, Tom Dewers, Mija Hubler, Pania Newell, Jiri Nemecek, Linfei Li, Yige Zhang, Shahlaa Al Wakeel, David Culp, and Bang He. Nanoparticle Injection Technology for Remediating Leaks of CO₂ Storage Formation (Final Technical Report). Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1631533.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Thomson, T. Silicide formation and particle size growth in high temperature annealed, self-assembled FePt nanoparticle arrays. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/826528.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hiatt, Colin. Elemental Bismuth Nanoparticles: Mechanistic Studies Concerning Reduction of a Bi(III) Precursor Leading to Nanoparticle Formation in a Bottom-Up, High Payload Synthetic Approach. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fernando A. Escobedo. Final Report: Grant DE-FG02-05ER15682. Simulation of Complex Microphase Formation in Pure and Nanoparticle-filled Diblock Copolymers. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/967391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Armstrong, Neal R. Asymmetric Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Model Nanomaterials for Light-Activated Formation of Fuels from Sunlight. Formal Progress Report -- Award DE-FG02-05ER15753. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1365549.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!