Literatura académica sobre el tema "Nanostructured materials. Polymer melting"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nanostructured materials. Polymer melting".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nanostructured materials. Polymer melting"
Mohlala, M. Sarah y Suprakas Sinha Ray. "Preparation and Characterization of Polymer/Multi-Walled Carbon Nanotube Nanocomposites". Solid State Phenomena 140 (octubre de 2008): 97–102. http://dx.doi.org/10.4028/www.scientific.net/ssp.140.97.
Texto completoTHOMPSON, S., N. K. DUTTA y N. ROY CHOUDHURY. "APPLICATION OF MICROTHERMAL ANALYSIS AND PULSED FORCE MICROSCOPY TO CHARACTERIZE NANOSTRUCTURED POLYMER". International Journal of Nanoscience 03, n.º 06 (diciembre de 2004): 839–43. http://dx.doi.org/10.1142/s0219581x04002735.
Texto completoDencheva, Nadya, Maria Jovita Oliveira, Olga S. Carneiro, Teresa G. Nunes y Zlatan Z. Denchev. "Preparation and Properties of Novel In Situ Composite Materials Based on Polyethylene-Polyamide Oriented Blends". Materials Science Forum 587-588 (junio de 2008): 515–19. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.515.
Texto completoKaewsichan, Lupong, Jasadee Kaewsrichan y Thitima Chuchom. "Nanostructured Polycaprolactone-Inorganic Phosphate Hybrid Scaffold for Medical Applications". Advanced Materials Research 93-94 (enero de 2010): 67–70. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.67.
Texto completoPonomarenko, O., A. Y. Nikulin, H. O. Moser, P. Yang y O. Sakata. "Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale". Journal of Synchrotron Radiation 18, n.º 4 (26 de mayo de 2011): 580–94. http://dx.doi.org/10.1107/s0909049511016335.
Texto completoXu, Xianlin, Gaokao Zhang, Shubo Wang, Shengnan Lv y Xupin Zhuang. "Fabrication of fibrous microfiltration membrane by pore filling of nanofibers into poly(ethylene terephthalate) nonwoven scaffold". Journal of Industrial Textiles 50, n.º 4 (21 de marzo de 2019): 566–83. http://dx.doi.org/10.1177/1528083719837733.
Texto completoSavchuk, Andriy I., Volodymyr I. Fediv, Tetyana A. Savchuk, Ihor D. Stolyarchuk, Yevheniy O. Kandyba, Dmytro I. Ostafiychuk, Svitlana A. Ivanchak y Vitaliy V. Makoviy. "Optical and Magneto-Optical Studies of Composite Materials Containing Semimagnetic Semiconductor Nanoparticles". Solid State Phenomena 151 (abril de 2009): 259–63. http://dx.doi.org/10.4028/www.scientific.net/ssp.151.259.
Texto completoVannikov, A. V., A. D. Grishina y E. I. Maltsev. "Nanostructured polymer materials and polymer-based devices". Nanotechnologies in Russia 4, n.º 1-2 (febrero de 2009): 1–18. http://dx.doi.org/10.1134/s1995078009010017.
Texto completoNanda, Karuna Kar. "Anomaly in Thermal Stability of Nanostructured Materials". Materials Science Forum 653 (junio de 2010): 23–30. http://dx.doi.org/10.4028/www.scientific.net/msf.653.23.
Texto completoHu, Zhibing. "Nanostructured polymer gels". Macromolecular Symposia 207, n.º 1 (febrero de 2004): 47–56. http://dx.doi.org/10.1002/masy.200450305.
Texto completoTesis sobre el tema "Nanostructured materials. Polymer melting"
Tang, Shijun. "Characterization, Properties and Applications of Novel Nanostructured Hydrogels". Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5605/.
Texto completoFarghaly, Ahmed A. "Fabrication of Multifunctional Nanostructured Porous Materials". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4189.
Texto completoGUO, QINGYUN. "GIANT MOLECULE BASED NANOSTRUCTURED MATERIALS: FROM STRUCTURE TO FUNCTIONALITY". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1603757858889563.
Texto completoLi, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.
Texto completoCheung, Man Kuen. "Investigating the tribological performance of different polymer and polymer nanocomposites using nanoscratch and wear techniques /". access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ap-b19887772a.pdf.
Texto completo"Submitted to Department of Physics and Materials Science in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 82-95)
Gandhi, Sahil Sandesh. "NANOSTRUCTURED OPTICAL MATERIALS BASED ON LIQUID CRYSTAL AND POLYMER COMPOSITES". Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent151074495757849.
Texto completoKuryak, Chris A. (Chris Adam). "Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79270.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 65).
Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and is easily scalable. With the majority of the unused energy in the United States being wasted in the form of heat and the recent mandates to reduce greenhouse gas emissions, thermoelectric devices could play an important role in our energy future by recovering this wasted heat and increasing the efficiency of energy production. However, low conversion efficiencies and the high cost of crystalline thermoelectric materials have restricted their implementation into modem society. To combat these issues, composite materials that use conductive polymers have been under investigation due to their low cost, manufacturability, and malleability. These new composite materials could lead to cheaper thermoelectric devices and even introduce the technology to new application areas. Unfortunately, polymer composites have been plagued by low operating efficiencies due to their low Seebeck coefficient. In this research, we show an enhanced Seebeck coefficient at the interface of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) spin coated onto silicon substrates. The maximum Seebeck coefficient achieved was 473 uV/K with a PEDOT:PSS thickness of 7.75 nm. Furthermore, the power factor of this interface was optimized with a 15.25 nm PEDOT:PSS thickness to a value of 1.24 uV/K2-cm, which is an order of magnitude larger than PEDOT:PSS itself. The effect of PEDOT:PSS thickness and silicon thickness on the thermoelectric properties is also discussed. Continuing research into this area will attempt to enhance the power factor even further by investigating better sample preparation techniques that avoid silicon surface oxidation, as well as creating a flexible composite material of PEDOT:PSS with silicon nanowires..
by Chris A. Kuryak.
S.M.
Brown, Elvie Escorro. "Bacterial cellulose/thermoplastic polymer nanocomposites". Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Spring2007/e_brown_050207.pdf.
Texto completoRatnagiri, Ramabhadra 1972. "Investigation of mixing in the melting regime during polymer compounding". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9131.
Texto completoIncludes bibliographical references (leaves 124-126).
Morphology evolution in the melting regime during compounding of immiscible polymer blends. where most of the size scale reduction occurs. is studied. Starting from an initial solid pellet mixture of two components. the progression to the final two-phase viscoelastic melt involves an intermediate stage where either one or both the components are melting or softening. Our focus is identifying and quantifying the factors that determine morphologies in the melting regime. We identify blend systems that exhibit a transformation in morphology from a minor-component continuous phase with dispersed major component domains to that with the major component being the continuous matrix phase. as a function of mixing time. This phenomenon of phase inversion during compounding is demonstrated to occur even in blends with a higher melting point minor component. A low solid modulus and a low melt viscosity are shown to favor the formation of the continuous phase by the minor component. Polycaprolactone/polyethylene. polystyrene/polyethylene. polycarbonate/ polyethylene, poly(ethylene-co-cyclohexane dimethylene terephthalate)/ polyethylene. and polybutylene/polycaprolactone blends were studied. These model blends were chosen based on the melt viscosity ratio and the relative softening temperatures of the two components. These two parameters were used to develop a two-dimensional framework for summarizing the compounding behavior of blends. For compounding runs with a small amount of the minor component (-1 Owt. % ) at a constant mixer temperature, phase inversion was observed for blend viscosity ratios less than 0.2. irrespective of the relative transition temperatures of the two components. Using a temperature ramping program resulted in the low melting component forming the continuous phase initially. Selective dissolution studies were used to quantify the amount of minor component present in the continuous phase at different mixing times. A polystyrene/polyethylene blend with a melt viscosity ratio of -0.001. was used to study the effect of batch size on the time required to form a continuous phase of the compounding of batch sizes ranging from 12g to 240g. Upon a five-fold increase in batch size the time to phase inversion increased by a factor of 3. This increase was explained by a combination of reduced heat conduction and reduced mechanical energy input to the batch. To enable studies at different batch sizes in the same mixing bowl, a novel mixing blade with modular elements was designed and constructed. This design was used for both radial and axial scaleup studies. The effect of changing the blade configuration on the time to phase inversion was explained using a specific relative stagger parameter, which is a measure of the effectiveness of stress transfer to the batch. Flow visualization using a glass window and blend sampling was used to develop a detailed description of the deformation steps leading to phase inversion in a model low viscosity ratio blend. Intermediate morphologies of flattened pellets, stacks of pellets, fibers and clusters were identified. Based on these observations a micro-structural model was developed to predict the time to phase inversion. The model incorporates a simplified flow-field approximation and calculates the strain in the major component. A strain-based criterion was proposed which in conjunction with the model yielded an explicit expression for the time to phase inversion. Model predictions of the dependence of time to phase inversion on nominal maximum-shear-rate in the mixer, volume fraction of the minor component and blend viscosity ratio were shown to be in excellent agreement with experimental results.
by Ramabhadra Ratnagiri.
Ph.D.
Tang, Youhong. "Microrheological study on polyethylene/thermotropic liquid crystalline polymer/layered silicates nanocomposites /". View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20TANG.
Texto completoLibros sobre el tema "Nanostructured materials. Polymer melting"
Misra, Devesh K. Polymer nanocomposites. Warrendale, Pa: Minerals, Metals and Materials Society, 2006.
Buscar texto completoNanotechnology and polymer-based nanostructures. New York: Nova Science Publishers, 2011.
Buscar texto completo1952-, Russell Thomas P., ed. Polymer thin films. Hackensack, N.J: World Scientific, 2008.
Buscar texto completoKe, Y. C. Polymer-layered silicate and silica nanocomposites. Boston, Mass: Elsevier, 2005.
Buscar texto completoNelson, J. Keith. Dielectric polymer nanocomposites. New York: Springer, 2010.
Buscar texto completoRay, Suprakas Sinha. Environmentally friendly polymer nanocomposites: Types, processing and properties. Oxford, UK: Woodhead Publishing, 2013.
Buscar texto completoVilgis, T. A. Reinforcement of polymer nano-composites. Cambridge: Cambride University Press, 2009.
Buscar texto completoAdvances in polymer nanocomposites: Types and applications. Cambridge: Woodhead, 2012.
Buscar texto completoMittal, Vikas. In-situ synthesis of polymer nanocomposites. Weinheim: Wiley-VCH, 2011.
Buscar texto completoSeimitsu kōbunshi no kiso to jitsuyōka gijutsu: Fundamental and practical technologies for nano-structured polymeric materials. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Nanostructured materials. Polymer melting"
Du, Jianzhong. "Polymer Vesicles". En Advanced Hierarchical Nanostructured Materials, 177–92. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664948.ch5.
Texto completoAndrievski, R. A. "The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials". En Nanostructured Materials, 263–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6_13.
Texto completoToshima, Naoki. "Polymer-capped Bimetallic Nanoclusters as Active and Selective Catalysts". En Macromolecular Nanostructured Materials, 182–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7_11.
Texto completoPailleret, Alain y Oleg Semenikhin. "Nanoscale Inhomogeneity of Conducting-Polymer-Based Materials". En Nanostructured Conductive Polymers, 99–159. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470661338.ch3.
Texto completoChen, Hsien-Yeh, Chiao-Tzu Su y Meng-Yu Tsai. "Nanoscale Functional Polymer Coatings for Biointerface Engineering". En Advanced Hierarchical Nanostructured Materials, 461–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664948.ch13.
Texto completoMayeen, Anshida y Nandakumar Kalarikkal. "Piezoelectric Polymer Nanocomposites For Energy Scavenging Applications". En Polymeric and Nanostructured Materials, 273–92. Oakville, ON ; Waretown, NJ : Apple Academic Press, 2019. |: Apple Academic Press, 2018. http://dx.doi.org/10.1201/b22428-18.
Texto completoGupta, Sanjeev K., Mina Talati y Prafulla K. Jha. "Shape and Size Dependent Melting Point Temperature of Nanoparticles". En Metastable and Nanostructured Materials III, 132–37. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-474-x.132.
Texto completoYuvashree, S. y J. Balavijayalakshmi. "Metal Oxide Embellished on Polymer Functionalized Reduced Graphene Oxide for Electrochemical Detection of Hydrogen Peroxide". En Nanostructured Smart Materials, 1–11. First edition.: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003130468-1.
Texto completoRamalakshmi, V. y J. Balavijayalakshmi. "Polymer Functionalized Reduced Graphene Oxide-Based Nickel Nanoparticles as Highly Efficient Dye Catalyst for Water Remediation". En Nanostructured Smart Materials, 61–75. First edition.: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003130468-4.
Texto completoPavlidis, Ioannis V., Aikaterini A. Tzialla, Apostolos Enotiadis, Haralambos Stamatis y Dimitrios Gournis. "Enzyme Immobilization on Layered and Nanostructured Materials". En Biocatalysis in Polymer Chemistry, 35–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632534.ch2.
Texto completoActas de conferencias sobre el tema "Nanostructured materials. Polymer melting"
Koo, Joseph, Louis Pilato y Gerry Wissler. "Polymer Nanostructured Materials for Propulsion Systems". En 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3606.
Texto completoAlthaus, Jasmin, Prabitha Urwyler, Celestino Padeste, Roman Heuberger, Hans Deyhle, Helmut Schift, Jens Gobrecht et al. "Micro- and nanostructured polymer substrates for biomedical applications". En SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Akhlesh Lakhtakia. SPIE, 2012. http://dx.doi.org/10.1117/12.915235.
Texto completoWudy, K., D. Drummer y M. Drexler. "Characterization of polymer materials and powders for selective laser melting". En PROCEEDINGS OF PPS-29: The 29th International Conference of the Polymer Processing Society - Conference Papers. American Institute of Physics, 2014. http://dx.doi.org/10.1063/1.4873875.
Texto completoConstantopoulos, Kristina T., Cameron J. Shearer, Joseph G. Shapter, Nicolas H. Voelcker y Amanda V. Ellis. "Preparation and characterization of multiwalled carbon nanotube (MWCNT)/polymer nanostructured materials". En Smart Materials, Nano-and Micro-Smart Systems, editado por Nicolas H. Voelcker y Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.810958.
Texto completoOlson, Jeremy D., Glenn P. Gray y Sue A. Carter. "Optimizing Hybrid Nanocrystal/Polymer Photovoltaics Through Ligand Choice". En Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swa2.
Texto completoPolkehn, Matthias, Pierre Eisenbrandt, Hiroyuki Tamura, Stefan Haacke, Stéphane Méry y Irene Burghardt. "Ultrafast excitonic and charge transfer dynamics in nanostructured organic polymer materials". En SPIE Photonics Europe, editado por David L. Andrews, Jean-Michel Nunzi y Andreas Ostendorf. SPIE, 2016. http://dx.doi.org/10.1117/12.2230314.
Texto completoSu, Wei-Hsiang y Ching-Fuh Lin. "Enhanced efficiency of polymer photovoltaic devices by using silicon nanowires". En Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.stuc9.
Texto completoClancy, Thomas, Sarah-Jane Frankland y Jeffrey Hinkley. "Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations". En 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2385.
Texto completoTsigara, A., L. Athanasekos, A. Meristoudi, J. Manasis, M. Hands, G. Mousdis, S. Pispas y N. A. Vainos. "Inorganic and hybrid polymer-inorganic nanostructured materials for optical physicochemical sensing applications". En SPIE Proceedings, editado por Valentin I. Vlad. SPIE, 2007. http://dx.doi.org/10.1117/12.757862.
Texto completoDonsì, Francesco, Simonetta Bartolucci, Paolo Bettotti, Federico Carosio, Patrizia Contursi, Gennaro Gentile, Marina Scarpa y Giorgia Spigno. "A Technology Platform For the Sustainable Recovery and Advanced Use of Nanostructured Cellulose from Agri-Food Residues (PANACEA Project)". En The First International Conference on “Green” Polymer Materials 2020. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cgpm2020-07212.
Texto completo