Literatura académica sobre el tema "Natural images"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Natural images".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Natural images"
Moorhead, Ian y Tom Trościanko. "Natural Images". Perception 29, n.º 9 (septiembre de 2000): 1013–15. http://dx.doi.org/10.1068/p2909ed.
Texto completoJeurissen, D. J. J. D. M. y P. R. Roelfsema. "Image Parsing, From Curves to Natural Images". Journal of Vision 12, n.º 9 (10 de agosto de 2012): 269. http://dx.doi.org/10.1167/12.9.269.
Texto completoTanaka, Go, Noriaki Suetake y Eiji Uchino. "Simple multiscale image enhancement for natural images". Optical Review 17, n.º 3 (mayo de 2010): 130–38. http://dx.doi.org/10.1007/s10043-010-0023-6.
Texto completoGeorge, J., G. Padmanabhan y M. Brady. "Image features predict edge causation in natural images". Journal of Vision 9, n.º 8 (22 de marzo de 2010): 1044. http://dx.doi.org/10.1167/9.8.1044.
Texto completoZhang, S., C. Abbey y M. Eckstein. "Classification Images for Search in Natural Images". Journal of Vision 10, n.º 7 (17 de agosto de 2010): 1355. http://dx.doi.org/10.1167/10.7.1355.
Texto completoBanafar, Lokendra Singh y Dr Lalita Gupta. "Text Detection from Natural Images using MSER Algorithm". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30 de abril de 2018): 73–81. http://dx.doi.org/10.31142/ijtsrd10806.
Texto completoV. Seeri, Shivananda, J. D. Pujari y P. S. Hiremath. "PNN Based Character Recognition in Natural Scene Images". Bonfring International Journal of Software Engineering and Soft Computing 6, Special Issue (31 de octubre de 2016): 109–13. http://dx.doi.org/10.9756/bijsesc.8254.
Texto completoAhmad, Khairul Adilah, Sharifah Lailee Syed Abdullah y Mahmod Othman. "Natural Images Contour Segmentation". Journal of Computing Research and Innovation 2, n.º 4 (30 de enero de 2018): 39–47. http://dx.doi.org/10.24191/jcrinn.v2i4.62.
Texto completoHall, Ronald L. "Images of natural evil". International Journal for Philosophy of Religion 87, n.º 3 (25 de abril de 2020): 213–16. http://dx.doi.org/10.1007/s11153-020-09757-9.
Texto completoSATO, TAKASHI, MAKOTO MATSUOKA y HIDEKI TAKAYASU. "FRACTAL IMAGE ANALYSIS OF NATURAL SCENES AND MEDICAL IMAGES". Fractals 04, n.º 04 (diciembre de 1996): 463–68. http://dx.doi.org/10.1142/s0218348x96000571.
Texto completoTesis sobre el tema "Natural images"
Chen, Ting-Li. "On the statistics of natural images /". View online version; access limited to Brown University users, 2005. http://wwwlib.umi.com/dissertations/fullcit/3174586.
Texto completoMiflah, Hussain Ismail Ahamed. "Higher-level representations of natural images". Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/39759.
Texto completoTavakoli, Fatemeh. "On Visual Attention in Natural Images". Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-48256.
Texto completoKim, Kyu-Heon. "Segmentation of natural texture images using a robust stochastic image model". Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307927.
Texto completoAzzabou, Noura. "Variable Bandwidth Image Models for Texture-Preserving Enhancement of Natural Images". Paris Est, 2008. http://pastel.paristech.org/4041/01/ThesisNouraAzzabou.pdf.
Texto completoThis thesis is devoted to image enhancement and texture preservation issues. This task involves an image model that describes the characteristics of the recovered signal. Such a model is based on the definition of the pixels interaction that is often characterized by two aspects (i) the photometric similarity between pixels (ii) the spatial distance between them that can be compared to a given scale. The first part of the thesis, introduces novel non-parametric image models towards more appropriate and adaptive image description using variable bandwidth approximations driven from a soft classification in the image. The second part introduces alternative means to model observations dependencies from geometric point of view. This is done through statistical modeling of co-occurrence between observations and the use of multiple hypotheses testing and particle filters. The last part is devoted to novel adaptive means for spatial bandwidth selection and more efficient tools to capture photometric relationships between observations. The thesis concludes with providing other application fields of the last technique towards proving its flexibility toward various problem requirements
Viklund, Alexander y Emma Nimstad. "Character Recognition in Natural Images Utilising TensorFlow". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208385.
Texto completoDet är vanligt att använda konvolutionära artificiella neuronnät (CNN) för bildigenkänning, då de ger de minsta felmarginalerna på kända datamängder som SVHN och MNIST. Dock saknas det forskning om användning av CNN för klassificering av bokstäver i naturliga bilder när det gäller hela det engelska alfabetet. Detta arbete beskriver ett experiment där TensorFlow används för att bygga ett CNN som tränas och testas med bilder från Chars74K. 15 bilder per klass används för träning och 15 per klass för testning. Målet med detta är att uppnå högre noggrannhet än 55.26%, vilket är vad de campos et al. [1] uppnådde med en metod utan artificiella neuronnät. I rapporten utforskas olika tekniker för att artificiellt utvidga den lilla datamängden, och resultatet av att applicera rotation, utdragning, translation och bruspåslag utvärderas. Resultatet av det är att alla dessa metoder utom bruspåslag ger en positiv effekt på nätverkets noggrannhet. Vidare visar experimentet att med ett CNN med tre lager går det att skapa en bokstavsklassificerare som är lika bra som de Campos et al.s klassificering. Om fler experiment skulle genomföras på nätverkets och utvidgningens parametrar är det troligt att ännu bättre resultat kan uppnås.
Granlund, Oskar y Kai Böhrnsen. "Improving character recognition by thresholding natural images". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208899.
Texto completoDagens optisk teckeninläsnings (OCR) algoritmer är kapabla av att extrahera text från bilder inom fördefinierade förhållanden. De moderna metoderna har uppnått en hög träffsäkerhet för maskinskriven text med minimala förvrängningar, men bilder tagna i en naturlig scen är fortfarande svåra att hantera. De senaste åren har ett stort intresse för att förbättra tecken igenkännings algoritmerna uppstått, eftersom fler kraftfulla och handhållna enheter används. Det huvudsakliga problemet när det kommer till igenkänning i naturliga bilder är olika förvrängningar som infallande ljus, textens textur och komplicerade bakgrunder. Olika metoder för förbehandling och därmed separation av texten och dess bakgrund har studerats under den senaste tiden. I våran studie bedömer vi förbättringen som uppnås vid förbehandlingen med två metoder som kallas för k-means och Otsu genom att jämföra svaren från en OCR algoritm. Studien visar att Otsu och k-means kan förbättra träffsäkerheten i vissa förhållanden men generellt sett ger det ett sämre resultat än de oförändrade bilderna.
Johnson, Samuel Alan. "Articulated human pose estimation in natural images". Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598026.
Texto completoNasrallah, Alexandre James. "Statistics of gradient directions in natural images". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1444886/.
Texto completoMa, Yufeng. "Going Deeper with Images and Natural Language". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99993.
Texto completoDoctor of Philosophy
Libros sobre el tema "Natural images"
de, Miranda Marco Antonio, ed. Terra América: Imagens = Images. Rio de Janeiro, RJ: Sextante Artes, 2003.
Buscar texto completoÉamon, De Buitléar, ed. Images of Irish nature. Bandon, Co. Cork: Mike Brown Photography, 2006.
Buscar texto completo1923-, Smith Dean, ed. Timeless images. [Phoenix, Ariz: Arizona Dept. of Transportation, State of Arizona, 1990.
Buscar texto completo1910-, Lavender David Sievert, ed. Images from the southwest. Flagstaff, Ariz: Northland Press, 1986.
Buscar texto completoParish, Steve. Australia from the heart: Words and images. Paddington, Qld., Australia: S. Parish Pub., 1990.
Buscar texto completoAdar, Pelah, ed. The vision of natural and complex images. Exeter: Elsevier Science, 1997.
Buscar texto completoDamon, James, Peter Giblin y Gareth Haslinger. Local Features in Natural Images via Singularity Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41471-3.
Texto completoAhmed, Saad Bin, Muhammad Imran Razzak y Rubiyah Yusof. Cursive Script Text Recognition in Natural Scene Images. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1297-1.
Texto completoColorado, images of the alpine landscape. Englewood, Colo: Westcliffe Publishers, 1985.
Buscar texto completoCapítulos de libros sobre el tema "Natural images"
Wolff, Robert S. y Larry Yaeger. "Images and Image Processing". En Visualization of Natural Phenomena, 1–26. New York, NY: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-0646-7_1.
Texto completoChevrier, Vincent, Christine Bourjot y Vincent Thomas. "Region Detection in Images". En Natural Computing Series, 425–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17348-6_17.
Texto completoFleet, David J. "Application to Natural Images". En Measurement of Image Velocity, 133–47. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3648-2_11.
Texto completoZhu, Song-Chun y Ying Wu. "Statistics of Natural Images". En Computer Vision, 19–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96530-3_2.
Texto completoVerbyla, David L. "Satellite Images". En Satellite Remote Sensing of Natural Resources, 1–14. London: CRC Press, 2022. http://dx.doi.org/10.1201/9780138740191-1.
Texto completoZheng, Gang, Jingsong Yang, Antony K. Liu, Xiaofeng Li, William G. Pichel, Shuangyan He y Shui Yu. "Observing Typhoons from Satellite-Derived Images". En Springer Natural Hazards, 183–214. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2893-9_9.
Texto completoErdem, Erkut y Sibel Tari. "Revisiting Skeletons from Natural Images". En Association for Women in Mathematics Series, 101–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16348-2_7.
Texto completoHyvärinen, Aapo, Jarmo Hurri y Patrik O. Hoyer. "Temporal Sequences of Natural Images". En Computational Imaging and Vision, 325–61. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-491-1_16.
Texto completoKataoka, Hirokatsu, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio Nakamura y Yutaka Satoh. "Pre-training Without Natural Images". En Computer Vision – ACCV 2020, 583–600. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69544-6_35.
Texto completoSerrano, J. F., J. H. Sossa, C. Avilés, R. Barrón, G. Olague y J. Villegas. "Scene Retrieval of Natural Images". En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 774–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10268-4_91.
Texto completoActas de conferencias sobre el tema "Natural images"
Li, Jizhizi, Jing Zhang y Dacheng Tao. "Deep Automatic Natural Image Matting". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/111.
Texto completoQin, Shaoling y Ning Cao. "Chroma discrimination for natural images". En 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5648227.
Texto completoMansoor, Atif Bin y Shoab A. Khan. "Contoulet denoising of natural images". En 2008 International Conference on Audio, Language and Image Processing. IEEE, 2008. http://dx.doi.org/10.1109/icalip.2008.4590267.
Texto completoTseng, Ting-En, Wei-Yi Chang, Chu-Song Chen y Yu-Chiang Frank Wang. "Style retrieval from natural images". En 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7471939.
Texto completoWu, Qi y Peter Hall. "Prime Shapes in Natural Images". En British Machine Vision Conference 2012. British Machine Vision Association, 2012. http://dx.doi.org/10.5244/c.26.45.
Texto completoUshiku, Yoshitaka, Tatsuya Harada y Yasuo Kuniyoshi. "Understanding images with natural sentences". En the 19th ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2072298.2072417.
Texto completoAlmeida, Mariana S. C. y Luis B. Almeida. "Blind deblurring of natural images". En ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517846.
Texto completoHasler, David y Sabine E. Suesstrunk. "Measuring colorfulness in natural images". En Electronic Imaging 2003, editado por Bernice E. Rogowitz y Thrasyvoulos N. Pappas. SPIE, 2003. http://dx.doi.org/10.1117/12.477378.
Texto completoSu, Ya-Fan y Homer H. Chen. "Shadow removal from natural images". En 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537886.
Texto completoThai, Thanh Hai, Florent Retraint y Remi Cogranne. "Statistical model of natural images". En 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6467412.
Texto completoInformes sobre el tema "Natural images"
Liu, Yong y Harel Shouval. Principal Components of Natural Images: An Analytical Solution. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada264800.
Texto completoMidak, Lilia Ya, Ivan V. Kravets, Olga V. Kuzyshyn, Jurij D. Pahomov, Victor M. Lutsyshyn y Aleksandr D. Uchitel. Augmented reality technology within studying natural subjects in primary school. [б. в.], febrero de 2020. http://dx.doi.org/10.31812/123456789/3746.
Texto completoTao, Yang, Amos Mizrach, Victor Alchanatis, Nachshon Shamir y Tom Porter. Automated imaging broiler chicksexing for gender-specific and efficient production. United States Department of Agriculture, diciembre de 2014. http://dx.doi.org/10.32747/2014.7594391.bard.
Texto completoStruthers, Kim. Natural resource conditions at Fort Pulaski National Monument: Findings and management considerations for selected resources. National Park Service, diciembre de 2023. http://dx.doi.org/10.36967/2300064.
Texto completoChoe, B.-H., A. Blais-Stevens, S. Samsonov y J. Dudley. RADARSAT Constellation Mission (RCM) InSAR preliminary observations of slope movements in British Columbia, Alberta, and Nunavut. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331099.
Texto completoLasko, Kristofer y Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), abril de 2021. http://dx.doi.org/10.21079/11681/40262.
Texto completoAnderson, Gerald L. y Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, diciembre de 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Texto completoKhan, Mahreen. The Environmental Impacts of War and Conflict. Institute of Development Studies, marzo de 2022. http://dx.doi.org/10.19088/k4d.2022.060.
Texto completoRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 2008. http://dx.doi.org/10.55274/r0011244.
Texto completoO'Carroll, David. Motion Adaptation, its Role in Motion Detection Under Natural Image Conditions and Target Detection. Fort Belvoir, VA: Defense Technical Information Center, junio de 2005. http://dx.doi.org/10.21236/ada451630.
Texto completo