Literatura académica sobre el tema "Natural language processing analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Natural language processing analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Natural language processing analysis"
Yilmaz, A. Egemen. "Natural Language Processing". International Journal of Systems and Service-Oriented Engineering 4, n.º 1 (enero de 2014): 68–83. http://dx.doi.org/10.4018/ijssoe.2014010105.
Texto completoCohen, Shay. "Bayesian Analysis in Natural Language Processing". Synthesis Lectures on Human Language Technologies 9, n.º 2 (9 de junio de 2016): 1–274. http://dx.doi.org/10.2200/s00719ed1v01y201605hlt035.
Texto completoDuh, Kevin. "Bayesian Analysis in Natural Language Processing". Computational Linguistics 44, n.º 1 (marzo de 2018): 187–89. http://dx.doi.org/10.1162/coli_r_00310.
Texto completoRadev, Dragomir R. y Rada Mihalcea. "Networks and Natural Language Processing". AI Magazine 29, n.º 3 (5 de septiembre de 2008): 16. http://dx.doi.org/10.1609/aimag.v29i3.2160.
Texto completoBelov, Serey, Daria Zrelova, Petr Zrelov y Vladimir Korenkov. "Overview of methods for automatic natural language text processing". System Analysis in Science and Education, n.º 3 (2020) (30 de septiembre de 2020): 8–22. http://dx.doi.org/10.37005/2071-9612-2020-3-8-22.
Texto completoFagan, Frank. "Natural Language Processing for Lawyers and Judges". Michigan Law Review, n.º 119.6 (2021): 1399. http://dx.doi.org/10.36644/mlr.119.6.natural.
Texto completoJäppinen, H., T. Honkela, H. Hyötyniemi y A. Lehtola. "A Multilevel Natural Language Processing Model". Nordic Journal of Linguistics 11, n.º 1-2 (junio de 1988): 69–87. http://dx.doi.org/10.1017/s033258650000175x.
Texto completoIyer, Hari, Mihir Gandhi y Sindhu Nair. "Sentiment Analysis for Visuals using Natural Language Processing". International Journal of Computer Applications 128, n.º 6 (15 de octubre de 2015): 31–35. http://dx.doi.org/10.5120/ijca2015906581.
Texto completoCohen, Shay. "Bayesian Analysis in Natural Language Processing, Second Edition". Synthesis Lectures on Human Language Technologies 12, n.º 1 (8 de abril de 2019): 1–343. http://dx.doi.org/10.2200/s00905ed2v01y201903hlt041.
Texto completoKorycinski, C. y Alan F. Newell. "Natural-language processing and automatic indexing". Indexer: The International Journal of Indexing: Volume 17, Issue 1 17, n.º 1 (1 de abril de 1990): 21–29. http://dx.doi.org/10.3828/indexer.1990.17.1.8.
Texto completoTesis sobre el tema "Natural language processing analysis"
Woldemariam, Yonas Demeke. "Natural language processing in cross-media analysis". Licentiate thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147640.
Texto completoShepherd, David. "Natural language program analysis combining natural language processing with program analysis to improve software maintenance tools /". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 176 p, 2007. http://proquest.umi.com/pqdweb?did=1397920371&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Texto completoRamachandran, Venkateshwaran. "A temporal analysis of natural language narrative text". Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040648/.
Texto completoLi, Wenhui. "Sentiment analysis: Quantitative evaluation of subjective opinions using natural language processing". Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/28000.
Texto completoKeller, Thomas Anderson. "Comparison and Fine-Grained Analysis of Sequence Encoders for Natural Language Processing". Thesis, University of California, San Diego, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10599339.
Texto completoMost machine learning algorithms require a fixed length input to be able to perform commonly desired tasks such as classification, clustering, and regression. For natural language processing, the inherently unbounded and recursive nature of the input poses a unique challenge when deriving such fixed length representations. Although today there is a general consensus on how to generate fixed length representations of individual words which preserve their meaning, the same cannot be said for sequences of words in sentences, paragraphs, or documents. In this work, we study the encoders commonly used to generate fixed length representations of natural language sequences, and analyze their effectiveness across a variety of high and low level tasks including sentence classification and question answering. Additionally, we propose novel improvements to the existing Skip-Thought and End-to-End Memory Network architectures and study their performance on both the original and auxiliary tasks. Ultimately, we show that the setting in which the encoders are trained, and the corpus used for training, have a greater influence of the final learned representation than the underlying sequence encoders themselves.
Patil, Supritha Basavaraj. "Analysis of Moving Events Using Tweets". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/90884.
Texto completoMaster of Science
News now travels faster on social media than through news channels. Information from social media can help retrieve minute details that might not be emphasized in news. People tend to describe their actions or sentiments in tweets. I aim at studying if such collections of tweets are dependable sources for identifying paths of moving events. In events like hurricanes, using Twitter can help in analyzing people’s reaction to such moving events. These may include actions such as dislocation or emotions during different phases of the event. The results obtained in the experiments concur with the actual path of the events with respect to the regions affected and time. The frequency of tweets increases during event peaks. The number of locations affected that are identified are significantly more than in news wires.
Giménez, Fayos María Teresa. "Natural Language Processing using Deep Learning in Social Media". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172164.
Texto completo[CA] En els últims anys, els models d'aprenentatge automàtic profund (AP) han revolucionat els sistemes de processament de llenguatge natural (PLN). Hem estat testimonis d'un avanç formidable en les capacitats d'aquests sistemes i actualment podem trobar sistemes que integren models PLN de manera ubiqua. Alguns exemples d'aquests models amb els quals interaccionem diàriament inclouen models que determinen la intenció de la persona que va escriure un text, el sentiment que pretén comunicar un tweet o la nostra ideologia política a partir del que compartim en xarxes socials. En aquesta tesi s'han proposats diferents models de PNL que aborden tasques que estudien el text que es comparteix en xarxes socials. En concret, aquest treball se centra en dues tasques fonamentalment: l'anàlisi de sentiments i el reconeixement de la personalitat de la persona autora d'un text. La tasca d'analitzar el sentiment expressat en un text és un dels problemes principals en el PNL i consisteix a determinar la polaritat que un text pretén comunicar. Es tracta per tant d'una tasca estudiada en profunditat de la qual disposem d'una vasta quantitat de recursos i models. Per contra, el problema del reconeixement de la personalitat és una tasca revolucionària que té com a objectiu determinar la personalitat dels usuaris considerant el seu estil d'escriptura. L'estudi d'aquesta tasca és més marginal i en conseqüència disposem de menys recursos per abordar-la però no obstant i això presenta un gran potencial. Tot i que el fouc principal d'aquest treball va ser el desenvolupament de models d'aprenentatge profund, també hem proposat models basats en recursos lingüístics i models clàssics de l'aprenentatge automàtic. Aquests últims models ens han permès explorar les subtileses de diferents elements lingüístics com ara l'impacte que tenen les emocions en la classificació correcta del sentiment expressat en un text. Posteriorment, després d'aquests treballs inicials es van desenvolupar models AP, en particular, Xarxes neuronals convolucionals (XNC) que van ser aplicades a les tasques prèviament esmentades. En el cas de el reconeixement de la personalitat, s'han comparat models clàssics de l'aprenentatge automàtic amb models d'aprenentatge profund la qual cosa a permet establir una comparativa de les dos aproximacions sota les mateixes premisses. Cal remarcar que el PNL ha evolucionat dràsticament en els últims anys gràcies a el desenvolupament de campanyes d'avaluació pública on múltiples equips d'investigació comparen les capacitats dels models que proposen sota les mateixes condicions. La majoria dels models presentats en aquesta tesi van ser o bé avaluats mitjançant campanyes d'avaluació públiques, o bé s'ha emprat la configuració d'una campanya pública prèviament celebrada. Sent conscients, per tant, de la importància d'aquestes campanyes per a l'avanç del PNL, vam desenvolupar una campanya d'avaluació pública on l'objectiu era classificar el tema tractat en un tweet, per a la qual cosa vam recollir i etiquetar un nou conjunt de dades. A mesura que avançàvem en el desenvolupament del treball d'aquesta tesi, vam decidir estudiar en profunditat com les XNC s'apliquen a les tasques de PNL. En aquest sentit, es van explorar dues línies de treball.En primer lloc, vam proposar un mètode d'emplenament semàntic per RNC, que planteja una nova manera de representar el text per resoldre tasques de PNL. I en segon lloc, es va introduir un marc teòric per abordar una de les crítiques més freqüents de l'aprenentatge profund, el qual és la falta de interpretabilitat. Aquest marc cerca visualitzar quins patrons lèxics, si n'hi han, han estat apresos per la xarxa per classificar un text.
[EN] In the last years, Deep Learning (DL) has revolutionised the potential of automatic systems that handle Natural Language Processing (NLP) tasks. We have witnessed a tremendous advance in the performance of these systems. Nowadays, we found embedded systems ubiquitously, determining the intent of the text we write, the sentiment of our tweets or our political views, for citing some examples. In this thesis, we proposed several NLP models for addressing tasks that deal with social media text. Concretely, this work is focused mainly on Sentiment Analysis and Personality Recognition tasks. Sentiment Analysis is one of the leading problems in NLP, consists of determining the polarity of a text, and it is a well-known task where the number of resources and models proposed is vast. In contrast, Personality Recognition is a breakthrough task that aims to determine the users' personality using their writing style, but it is more a niche task with fewer resources designed ad-hoc but with great potential. Despite the fact that the principal focus of this work was on the development of Deep Learning models, we have also proposed models based on linguistic resources and classical Machine Learning models. Moreover, in this more straightforward setup, we have explored the nuances of different language devices, such as the impact of emotions in the correct classification of the sentiment expressed in a text. Afterwards, DL models were developed, particularly Convolutional Neural Networks (CNNs), to address previously described tasks. In the case of Personality Recognition, we explored the two approaches, which allowed us to compare the models under the same circumstances. Noteworthy, NLP has evolved dramatically in the last years through the development of public evaluation campaigns, where multiple research teams compare the performance of their approaches under the same conditions. Most of the models here presented were either assessed in an evaluation task or either used their setup. Recognising the importance of this effort, we curated and developed an evaluation campaign for classifying political tweets. In addition, as we advanced in the development of this work, we decided to study in-depth CNNs applied to NLP tasks. Two lines of work were explored in this regard. Firstly, we proposed a semantic-based padding method for CNNs, which addresses how to represent text more appropriately for solving NLP tasks. Secondly, a theoretical framework was introduced for tackling one of the most frequent critics of Deep Learning: interpretability. This framework seeks to visualise what lexical patterns, if any, the CNN is learning in order to classify a sentence. In summary, the main achievements presented in this thesis are: - The organisation of an evaluation campaign for Topic Classification from texts gathered from social media. - The proposal of several Machine Learning models tackling the Sentiment Analysis task from social media. Besides, a study of the impact of linguistic devices such as figurative language in the task is presented. - The development of a model for inferring the personality of a developer provided the source code that they have written. - The study of Personality Recognition tasks from social media following two different approaches, models based on machine learning algorithms and handcrafted features, and models based on CNNs were proposed and compared both approaches. - The introduction of new semantic-based paddings for optimising how the text was represented in CNNs. - The definition of a theoretical framework to provide interpretable information to what CNNs were learning internally.
Giménez Fayos, MT. (2021). Natural Language Processing using Deep Learning in Social Media [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172164
TESIS
Gorrell, Genevieve. "Generalized Hebbian Algorithm for Dimensionality Reduction in Natural Language Processing". Doctoral thesis, Linköping : Department of Computer and Information Science, Linköpings universitet, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1045s.pdf.
Texto completoMarzo, i. Grimalt Núria. "Natural Language Processing Model for Log Analysis to Retrieve Solutions For Troubleshooting Processes". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300042.
Texto completoEn av de mest tidskrävande uppgifterna inom telekommunikationsindustrin är att felsöka och hitta lösningar till felrapporter (TR). Denna uppgift kräver förståelse av textdata, som försvåras as att texten innehåller företags- och domänspecifika attribut. Texten innehåller typiskt sett många förkortningar, felskrivningar och tabeller blandat med numerisk information. Detta examensarbete ämnar att förenkla inhämtningen av lösningar av nya felsökningar på ett automatiserat sätt med hjälp av av naturlig språkbehandling (NLP), specifikt modeller baserade på dubbelriktad kodrepresentation (BERT). Examensarbetet föreslår en textrankningsmodell som, givet en felbeskrivning, kan rangordna de bästa möjliga lösningarna till felet baserat på tidigare felsökningar. Modellen hanterar avvägningen mellan noggrannhet och fördröjning genom att implementera den dubbelriktade kodrepresentationen i två faser: en initial inhämtningsfas och en omordningsfas. För industrianvändning krävs att modellen uppnår en given noggrannhet med en viss tidsbegränsning. Experimenten för att utvärdera noggrannheten och fördröjningen har utförts på Ericssons felsökningsdata. Utvärderingen visar att den föreslagna modellen kan hämta och omordna data för felsökningar med signifikanta förbättringar gentemot modeller utan dubbelriktad kodrepresentation.
Mc, Kevitt Paul. "Analysing coherence of intention in natural language dialogue". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303991.
Texto completoLibros sobre el tema "Natural language processing analysis"
Jones, Karen Sparck. Evaluating natural language processing systems: An analysis and review. Berlin: Springer, 1995.
Buscar texto completoNaive semantics for natural language understanding. Boston: Kluwer Academic Publishers, 1988.
Buscar texto completoSabourin, Conrad. Computational text understanding: Natural language programming, argument analysis : bibliography. Montréal: Infolingua, 1994.
Buscar texto completoApplied natural language processing and content analysis: Advances in identification, investigation, and resolution. Hershey, PA: Information Science Reference, 2012.
Buscar texto completoMinker, Wolfgang. Stochastically-based semantic analysis. New York: Springer Science+Business Media, 1999.
Buscar texto completoMinker, Wolfgang. Stochastically-based semantic analysis. Boston: Kluwer Academic, 1999.
Buscar texto completoCreswell, Cassandre. Syntactic form and discourse function in natural language generation. New York, NY: Routledge, 2005.
Buscar texto completoSyntactic form and discourse function in natural language generation. New York: Routledge, 2004.
Buscar texto completoText generation: Using discourse strategies and focus constraints to generate natural language text. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Buscar texto completoPerez-Marin, Diana. Conversational agents and natural language interaction: Techniques and effective practices. Hershey, PA: Information Science Reference, 2011.
Buscar texto completoCapítulos de libros sobre el tema "Natural language processing analysis"
Taylor, Martin M. y David A. Waugh. "Dialogue analysis using layered protocols". En Natural Language Processing, 189–232. Amsterdam: John Benjamins Publishing Company, 2000. http://dx.doi.org/10.1075/nlp.1.05tay.
Texto completoTapsai, Chalermpol, Herwig Unger y Phayung Meesad. "Semantic Analysis". En Thai Natural Language Processing, 85–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56235-9_4.
Texto completoVerma, Rakesh M. y David J. Marchette. "Natural Language Processing". En Cybersecurity Analytics, 223–51. Boca Raton, FL : CRC Press, 2020. | Series: Chapman & Hall/CRC data science series: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429326813-8.
Texto completoCutler, Josh y Matt Dickenson. "Case Study: Natural Language Processing". En Textbooks on Political Analysis, 191–204. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36826-5_14.
Texto completoGezici, Gizem y Berrin Yanıkoğlu. "Sentiment Analysis in Turkish". En Turkish Natural Language Processing, 255–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90165-7_12.
Texto completoSarkar, Dipanjan. "Natural Language Processing Basics". En Text Analytics with Python, 1–68. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4354-1_1.
Texto completoNulty, Paul. "Semantic/Content Analysis/Natural Language Processing". En Encyclopedia of Big Data, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32001-4_182-1.
Texto completoFilip, Hana, Michael K. Tanenhaus, Greg N. Carlson, Paul D. Allopenna y Joshua Blatt. "Reduced relatives judged hard require constraint-based analyses". En Natural Language Processing, 255–79. Amsterdam: John Benjamins Publishing Company, 2002. http://dx.doi.org/10.1075/nlp.4.14fil.
Texto completoKordoni, Valia y Julia Neu. "Deep Analysis of Modern Greek". En Natural Language Processing – IJCNLP 2004, 674–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30211-7_71.
Texto completoCheong, Paulo, Dawei Song, Peter Bruza y Kam-Fai Wong. "Information Flow Analysis with Chinese Text". En Natural Language Processing – IJCNLP 2004, 100–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30211-7_11.
Texto completoActas de conferencias sobre el tema "Natural language processing analysis"
Khuman, Arjab Singh, Yingjie Yang y Sifeng Liu. "Grey relational analysis and natural language Processing". En 2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS). IEEE, 2015. http://dx.doi.org/10.1109/gsis.2015.7301838.
Texto completoJakkali, Pratibha y T. Tamilarasi. "Automation of outage analysis using natural language processing". En 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2016. http://dx.doi.org/10.1109/rteict.2016.7808012.
Texto completoRashtian, Hootan, Azadeh Hashemi y Leah Macfadyen. "HARNESSING NATURAL LANGUAGE PROCESSING TO SUPPORT CURRICULUM ANALYSIS". En 13th annual International Conference of Education, Research and Innovation. IATED, 2020. http://dx.doi.org/10.21125/iceri.2020.0445.
Texto completoTrivedi, Gaurav. "Clinical Text Analysis Using Interactive Natural Language Processing". En IUI'15: IUI'15 20th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2732158.2732162.
Texto completoSingh, Jyotika. "Social Media Analysis using Natural Language Processing Techniques". En Python in Science Conference. SciPy, 2021. http://dx.doi.org/10.25080/majora-1b6fd038-009.
Texto completoBasile, Pierpaolo, Annalina Caputo, Seamus Lawless y Giovanni Semeraro. "Diachronic Analysis of Entities by ExploitingWikipedia Page revisions". En Recent Advances in Natural Language Processing. Incoma Ltd., Shoumen, Bulgaria, 2019. http://dx.doi.org/10.26615/978-954-452-056-4_011.
Texto completoMorita, Hajime y Tomoya wakura. "A Fast and Accurate Partially Deterministic Morphological Analysis". En Recent Advances in Natural Language Processing. Incoma Ltd., Shoumen, Bulgaria, 2019. http://dx.doi.org/10.26615/978-954-452-056-4_093.
Texto completoMd Shoeb, Abu Awal, Shahab Raji y Gerard de Melo. "EmoTag – Towards an Emotion-Based Analysis of Emojis". En Recent Advances in Natural Language Processing. Incoma Ltd., Shoumen, Bulgaria, 2019. http://dx.doi.org/10.26615/978-954-452-056-4_126.
Texto completoTobaili, Taha, Miriam Fernandez, Harith Alani, Sanaa Sharafeddine, Hazem Hajj y Goran Glavaš. "SenZi: A Sentiment Analysis Lexicon for the Latinised Arabic (Arabizi)". En Recent Advances in Natural Language Processing. Incoma Ltd., Shoumen, Bulgaria, 2019. http://dx.doi.org/10.26615/978-954-452-056-4_138.
Texto completoHadiya, Nidhi y Nirali Nanavati. "Indic SentiReview: Natural Language Processing based Sentiment Analysis on major Indian Languages". En 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2019. http://dx.doi.org/10.1109/iccmc.2019.8819786.
Texto completoInformes sobre el tema "Natural language processing analysis"
Furey, John, Austin Davis y Jennifer Seiter-Moser. Natural language indexing for pedoinformatics. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41960.
Texto completoSteedman, Mark. Natural Language Processing. Fort Belvoir, VA: Defense Technical Information Center, junio de 1994. http://dx.doi.org/10.21236/ada290396.
Texto completoMurdick, Dewey, Daniel Chou, Ryan Fedasiuk y Emily Weinstein. The Public AI Research Portfolio of China’s Security Forces. Center for Security and Emerging Technology, marzo de 2021. http://dx.doi.org/10.51593/20200057.
Texto completoTratz, Stephen C. Arabic Natural Language Processing System Code Library. Fort Belvoir, VA: Defense Technical Information Center, junio de 2014. http://dx.doi.org/10.21236/ada603814.
Texto completoWilks, Yorick, Michael Coombs, Roger T. Hartley y Dihong Qiu. Active Knowledge Structures for Natural Language Processing. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada245893.
Texto completoFirpo, M. Natural Language Processing as a Discipline at LLNL. Office of Scientific and Technical Information (OSTI), febrero de 2005. http://dx.doi.org/10.2172/15015192.
Texto completoHobbs, Jerry R., Douglas E. Appelt, John Bear, Mabry Tyson y David Magerman. Robust Processing of Real-World Natural-Language Texts. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada258837.
Texto completoAnderson, Thomas. State of the Art of Natural Language Processing. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1987. http://dx.doi.org/10.21236/ada188112.
Texto completoLehnert, Wendy G. Using Case-Based Reasoning in Natural Language Processing. Fort Belvoir, VA: Defense Technical Information Center, junio de 1993. http://dx.doi.org/10.21236/ada273538.
Texto completoNeal, Jeannette G., Elissa L. Feit, Douglas J. Funke y Christine A. Montgomery. An Evaluation Methodology for Natural Language Processing Systems. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1992. http://dx.doi.org/10.21236/ada263301.
Texto completo