Literatura académica sobre el tema "Navier-Stokes, Equations de"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Navier-Stokes, Equations de".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Navier-Stokes, Equations de"
Rannacher, Rolf. "Numerical analysis of the Navier-Stokes equations". Applications of Mathematics 38, n.º 4 (1993): 361–80. http://dx.doi.org/10.21136/am.1993.104560.
Texto completoAcevedo Tapia, P., C. Amrouche, C. Conca y A. Ghosh. "Stokes and Navier-Stokes equations with Navier boundary conditions". Journal of Differential Equations 285 (junio de 2021): 258–320. http://dx.doi.org/10.1016/j.jde.2021.02.045.
Texto completoAcevedo, Paul, Chérif Amrouche, Carlos Conca y Amrita Ghosh. "Stokes and Navier–Stokes equations with Navier boundary condition". Comptes Rendus Mathematique 357, n.º 2 (febrero de 2019): 115–19. http://dx.doi.org/10.1016/j.crma.2018.12.002.
Texto completoCholewa, Jan W. y Tomasz Dlotko. "Fractional Navier-Stokes equations". Discrete and Continuous Dynamical Systems - Series B 22, n.º 5 (abril de 2017): 29. http://dx.doi.org/10.3934/dcdsb.2017149.
Texto completoRamm, Alexander G. "Navier-Stokes equations paradox". Reports on Mathematical Physics 88, n.º 1 (agosto de 2021): 41–45. http://dx.doi.org/10.1016/s0034-4877(21)00054-9.
Texto completoReddy, M. H. Lakshminarayana, S. Kokou Dadzie, Raffaella Ocone, Matthew K. Borg y Jason M. Reese. "Recasting Navier–Stokes equations". Journal of Physics Communications 3, n.º 10 (17 de octubre de 2019): 105009. http://dx.doi.org/10.1088/2399-6528/ab4b86.
Texto completoBensoussan, A. "Stochastic Navier-Stokes Equations". Acta Applicandae Mathematicae 38, n.º 3 (marzo de 1995): 267–304. http://dx.doi.org/10.1007/bf00996149.
Texto completoCapiński, Marek y Nigel Cutland. "Stochastic Navier-Stokes equations". Acta Applicandae Mathematicae 25, n.º 1 (octubre de 1991): 59–85. http://dx.doi.org/10.1007/bf00047665.
Texto completoYang, JianWei y Shu Wang. "Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations". Science China Mathematics 57, n.º 10 (28 de febrero de 2014): 2153–62. http://dx.doi.org/10.1007/s11425-014-4792-4.
Texto completoMartin , Andreas. "Mathematical-Physical Approach to Prove that the Navier-Stokes Equations Provide a Correct Description of Fluid Dynamics". Hyperscience International Journals 2, n.º 3 (septiembre de 2022): 97–102. http://dx.doi.org/10.55672/hij2022pp97-102.
Texto completoTesis sobre el tema "Navier-Stokes, Equations de"
Shuttleworth, Robert. "Block preconditioning the Navier-Stokes equations". College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7002.
Texto completoThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Neklyudov, Mikhail. "Navier-Stokes equations and vector advection". Thesis, University of York, 2006. http://etheses.whiterose.ac.uk/11011/.
Texto completoRejaiba, Ahmed. "Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier". Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3050/document.
Texto completoThis thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator
Benson, D. J. A. "Finite volume solution of Stokes and Navier-Stokes equations". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302883.
Texto completoAl-Jaboori, Mustafa Ali Hussain. "Navier-Stokes equations on the β-plane". Thesis, Durham University, 2012. http://etheses.dur.ac.uk/5582/.
Texto completoHaddon, E. W. "Numerical studies of the Navier-Stokes equations". Thesis, University of East Anglia, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377745.
Texto completoTang, Tao. "Numerical solutions of the Navier-Stokes equations". Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328961.
Texto completoSłomka, Jonasz. "Generalized Navier-Stokes equations for active turbulence". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117861.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 211-227).
Recent experiments show that active fluids stirred by swimming bacteria or ATPpowered microtubule networks can exhibit complex flow dynamics and emergent pattern scale selection. Here, I will investigate a simplified phenomenological approach to 'active turbulence', a chaotic non-equilibrium steady-state in which the solvent flow develops a dominant vortex size. This approach generalizes the incompressible Navier-Stokes equations by accounting for active stresses through a linear instability mechanism, in contrast to externally driven classical turbulence. This minimal model can reproduce experimentally observed velocity statistics and is analytically tractable in planar and curved geometry. Exact stationary bulk solutions include Abrikosovtype vortex lattices in 2D and chiral Beltrami fields in 3D. Numerical simulations for a plane Couette shear geometry predict a low viscosity phase mediated by stress defects, in qualitative agreement with recent experiments on bacterial suspensions. Considering the active analog of Stokes' second problem, our numerical analysis predicts that a periodically rotating ring will oscillate at a higher frequency in an active fluid than in a passive fluid, due to an activity-induced reduction of the fluid inertia. The model readily generalizes to curved geometries. On a two-sphere, we present exact stationary solutions and predict a new type of upward energy transfer mechanism realized through the formation of vortex chains, rather than the merging of vortices, as expected from classical 2D turbulence. In 3D simulations on periodic domains, we observe spontaneous mirror-symmetry breaking realized through Beltrami-like flows, which give rise to upward energy transfer, in contrast to the classical direct Richardson cascade. Our analysis of triadic interactions supports this numerical prediction by establishing an analogy with forced rigid body dynamics and reveals a previously unknown triad invariant for classical turbulence.
by Jonasz Słomka.
Ph. D.
Ghosh, Amrita. "Naviers-Stokes equations with Navier boundary condition". Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3021/document.
Texto completoMy PhD thesis title is "Navier-Stokes equations with Navier boundary condition" where I have considered the motion of an incompressible, viscous, Newtonian fluid in a bounded do- main in R3. The fluid flow is described by the well-known Navier-Stokes equations, given by thefollowing system 1 )t − L1u + (u ⋅ ∇)u + ∇n = 0, div u = 01u ⋅ n = 0, 2[(IDu)n]r + aur = 0 in Q × (0, T )on Γ × (0, T ) (0.1) 11lu(0) = u0 in Qin a bounded domain Q ⊂ R3 with boundary Γ, possibly not connected, of class C1,1. The initialvelocity u0 and the (scalar) friction coefficient a are given functions. The unit outward normal and tangent vectors on Γ are denoted by n and r respectively and IDu = 1 (∇u + ∇uT ) is the rate of strain tensor. The functions u and n describe respectively the velocity2 and the pressure of a fluid in Q satisfying the boundary condition (0.1.2).This boundary condition, first proposed by H. Navier in 1823, has been studied extensively in recent years, among many reasons due to its contrast with the no-slip Dirichlet boundary condition: it offers more freedom and are likely to provide a physically acceptable solution at least to some of the paradoxical phenomenons, resulting from the no-slip condition, for example, D’Alembert’s paradox or no-collision paradox.My PhD work consists of three parts. primarily I have discussed the Lp -theory of well-posedness of the problem (0.1), in particular existence, uniqueness of weak and strong solutions in W 1,p (Q) and W 2,p (Q) for all p ∈ (1, ∞) considering minimal regularity on the friction coefficienta. Here a is a function, not merely a constant which reflects various properties of the fluid and/or of the boundary. Moreover, I have deduced estimates showing explicitly the dependence of u on a which enables us to analyze the behavior of the solution with respect to the friction coefficient.Using this fact that the solutions are bounded with respect to a, we have shown the solution of the Navier-Stokes equations with Navier boundary condition converges strongly to a solution of the Navier-Stokes equations with Dirichlet boundary condition corresponding to the sameinitial data in the energy space as a → ∞. The similar results have also been deduced for thestationary case.The last chapter is concerned with estimates for a Laplace-Robin problem: the following second order elliptic operator in divergence form in a bounded domain Q ⊂ Rn of class C1, withthe Robin boundary condition has been considered1div(A∇)u = divf + F in Q, 11 )u + u = f ⋅ n + g on Γ. (0.2) 2The coefficient matrix A is symmetric and belongs to V MO(R3). Also a is a function belonging to some Lq -space. Apart from proving existence, uniqueness of weak and strong solutions, we obtain the bound on u, uniform in a for a sufficiently large, in the Lp -norm. We have separately studied the two cases: the interior estimate and the boundary estimate to make the main idea clear in the simple set up
Landmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds-averaged Navier-Stokes equations". [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-35199.
Texto completoLibros sobre el tema "Navier-Stokes, Equations de"
Łukaszewicz, Grzegorz y Piotr Kalita. Navier–Stokes Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27760-8.
Texto completoConstantin, P. Navier-Stokes equations. Chicago: University of Chicago Press, 1988.
Buscar texto completoPlotnikov, Pavel y Jan Sokołowski. Compressible Navier-Stokes Equations. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0367-0.
Texto completoSohr, Hermann. The Navier-Stokes Equations. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0551-3.
Texto completoSohr, Hermann. The Navier-Stokes Equations. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8255-2.
Texto completoZeytounian, Radyadour Kh. Navier-Stokes-Fourier Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20746-4.
Texto completoHărăguș, D. Equations du type Navier-Stokes. Timișoara: Tipografia Universitătii din Timișoara, 1994.
Buscar texto completoJoanna, Rencławowicz, Zajączkowski Wojciech M y Instytut Matematyczny (Polska Akademia Nauk), eds. Parabolic and Navier-Stokes equations. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2008.
Buscar texto completoJoanna, Rencławowicz, Zajączkowski Wojciech M y Instytut Matematyczny (Polska Akademia Nauk), eds. Parabolic and Navier-Stokes equations. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2008.
Buscar texto completoCiprian, Foiaş, ed. Navier-Stokes equations and turbulence. Cambridge, UK: Cambridge University Press, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Navier-Stokes, Equations de"
Kollmann, Wolfgang. "Navier–Stokes Equations". En Navier-Stokes Turbulence, 17–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_2.
Texto completoKollmann, Wolfgang. "Navier-Stokes Equations". En Navier-Stokes Turbulence, 19–57. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59578-3_2.
Texto completoDebussche, Arnaud, Berenger Hug y Etienne Mémin. "Modeling Under Location Uncertainty: A Convergent Large-Scale Representation of the Navier-Stokes Equations". En Mathematics of Planet Earth, 15–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_2.
Texto completoKollmann, Wolfgang. "Functional Differential Equations". En Navier-Stokes Turbulence, 115–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_7.
Texto completoKollmann, Wolfgang. "Functional Differential Equations". En Navier-Stokes Turbulence, 121–23. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-59578-3_7.
Texto completoThomasset, F. "Implementation of non-conforming linear finite elements (Approximation APX5—Two-dimensional case)". En Navier–Stokes Equations, 321–35. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/chel/343/05.
Texto completoQuarteroni, Alfio. "Navier-Stokes equations". En Numerical Models for Differential Problems, 457–510. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49316-9_17.
Texto completoXu, Xiaoping. "Navier–Stokes Equations". En Algebraic Approaches to Partial Differential Equations, 269–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36874-5_9.
Texto completoCapiński, M. y N. J. Cutland. "Navier-Stokes Equations". En Advances in Analysis, Probability and Mathematical Physics, 20–36. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8451-7_2.
Texto completoQuarteroni, Alfio. "Navier-Stokes equations". En Numerical Models for Differential Problems, 429–82. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5522-3_16.
Texto completoActas de conferencias sobre el tema "Navier-Stokes, Equations de"
Wolf, Jörg. "A direct proof of the Caffarelli-Kohn-Nirenberg theorem". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.
Texto completoWrzosek, Dariusz. "Chemotaxis models with a threshold cell density". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.
Texto completoArkhipova, Arina. "New a priori estimates for nondiagonal strongly nonlinear parabolic systems". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-1.
Texto completoEscher, Joachim y Zhaoyang Yin. "Initial boundary value problems of the Degasperis-Procesi equation". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-10.
Texto completoFarwig, Reinhard, Hideo Kozono y Hermann Sohr. "Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-11.
Texto completoFeireisl, Eduard y Hana Petzeltová. "Non-standard applications of the Łojasiewicz-Simon theory: Stabilization to equilibria of solutions to phase-field models". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-12.
Texto completoGoncerzewicz, Jan. "On the initial-boundary value problems for a degenerate parabolic equation". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-13.
Texto completoGramchev, Todor y Grzegorz Łysik. "Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-14.
Texto completoJanela, João y Adélia Sequeira. "On a constrained minimization problem arising in hemodynamics". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-15.
Texto completoKonieczny, Paweł. "Linear flow problems in 2D exterior domains for 2D incompressible fluid flows". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-16.
Texto completoInformes sobre el tema "Navier-Stokes, Equations de"
Newman, Christopher K. Exponential integrators for the incompressible Navier-Stokes equations. Office of Scientific and Technical Information (OSTI), julio de 2004. http://dx.doi.org/10.2172/975250.
Texto completoKilic, M. S., G. B. Jacobs, J. S> Hesthaven y G. Haller. Reduced Navier-Stokes Equations Near a Flow Boundary. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2005. http://dx.doi.org/10.21236/ada458888.
Texto completoElman, Howard y David Silvester. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, junio de 1994. http://dx.doi.org/10.21236/ada599710.
Texto completoMikulevicius, R. y B. Rozovskii. Stochastic Navier-Stokes Equations. Propagation of Chaos and Statistical Moments. Fort Belvoir, VA: Defense Technical Information Center, enero de 2001. http://dx.doi.org/10.21236/ada413558.
Texto completoLuskin, Mitchell y George R. Sell. Inertial Manifolds for Navier-Stokes Equations and Related Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada241805.
Texto completoSzymczak, William G. Viscous Split Algorithms for the Time Dependent Incompressible Navier Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, junio de 1989. http://dx.doi.org/10.21236/ada211592.
Texto completoMcDonough, J. M., Y. Yang y X. Zhong. Additive Turbulent Decomposition of the Incompressible and Compressible Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, enero de 1993. http://dx.doi.org/10.21236/ada277321.
Texto completoEvans, John A. y Thomas J. Hughes. Isogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada560496.
Texto completoEvans, John A. y Thomas J. Hughes. Isogeometric Divergence-conforming B-splines for the Unsteady Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada560939.
Texto completoCarasso, Alfred S. Data assimilation in 2D incompressible Navier-Stokes equations Navier-Stokes equations, using a stabilized explicit O(Δt)2 leapfrog finite difference scheme run backward in time. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.tn.2299.
Texto completo