Literatura académica sobre el tema "Nuclear reactors – Computer simulation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nuclear reactors – Computer simulation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nuclear reactors – Computer simulation"
Wulff, Wolfgang. "Computer simulation of two-phase flow in nuclear reactors". Nuclear Engineering and Design 141, n.º 1-2 (junio de 1993): 303–13. http://dx.doi.org/10.1016/0029-5493(93)90108-l.
Texto completoBakhshayesh, Moshkbar y Naser Vosoughi. "A simulation of a pebble bed reactor core by the MCNP-4C computer code". Nuclear Technology and Radiation Protection 24, n.º 3 (2009): 177–82. http://dx.doi.org/10.2298/ntrp0903177b.
Texto completoSalcedo, L. L., E. Oset, M. J. Vicente-Vacas y C. Garcia-Recio. "Computer simulation of inclusive pion nuclear reactions". Nuclear Physics A 484, n.º 3-4 (julio de 1988): 557–92. http://dx.doi.org/10.1016/0375-9474(88)90310-7.
Texto completoLee, Kim, Moon, Lim y Cho. "Heat-Absorbing Capacity of High-Heat-Flux Components in Nuclear Fusion Reactors". Energies 12, n.º 19 (3 de octubre de 2019): 3771. http://dx.doi.org/10.3390/en12193771.
Texto completoOkunev, V. S. "Fundamentally New Composite Materials of Fast Reactors Made on the Basis of Nanotechnology". Key Engineering Materials 887 (mayo de 2021): 159–64. http://dx.doi.org/10.4028/www.scientific.net/kem.887.159.
Texto completoSadek, I. S. y R. Vedantham. "Optimal control of distributed nuclear reactors with pointwise controllers". Mathematical and Computer Modelling 32, n.º 3-4 (agosto de 2000): 341–48. http://dx.doi.org/10.1016/s0895-7177(00)00139-4.
Texto completoKhorshidi, Abdollah. "Accelerator-Based Methods in Radio-Material 99Mo/99mTc Production Alternatives by Monte Carlo Method: The Scientific-Expedient Considerations in Nuclear Medicine". Journal of Multiscale Modelling 11, n.º 01 (14 de enero de 2019): 1930001. http://dx.doi.org/10.1142/s1756973719300016.
Texto completoGabbar, Hossam A., Muhammad R. Abdussami y Md Ibrahim Adham. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids". Energies 13, n.º 19 (5 de octubre de 2020): 5172. http://dx.doi.org/10.3390/en13195172.
Texto completoProšek, Andrej y Marko Matkovič. "RELAP5/MOD3.3 Analysis of the Loss of External Power Event with Safety Injection Actuation". Science and Technology of Nuclear Installations 2018 (2018): 1–14. http://dx.doi.org/10.1155/2018/6964946.
Texto completoPakari, O., V. Lamirand, B. Vandereydt, F. Vitullo, M. Hursin, C. Kong y A. Pautz. "Design and Simulation of Gamma Spectrometry Experiments in the CROCUS Reactor". EPJ Web of Conferences 225 (2020): 04016. http://dx.doi.org/10.1051/epjconf/202022504016.
Texto completoTesis sobre el tema "Nuclear reactors – Computer simulation"
OLIVEIRA, JOSE R. de. "Programa computacional para estudo da estrategia de controle de um reator nuclear do tipo PWR". reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11060.
Texto completoMade available in DSpace on 2014-10-09T14:08:47Z (GMT). No. of bitstreams: 1 08340.pdf: 14966348 bytes, checksum: aaa6cd8ca53387e367ec3e01876c6a48 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Huntington, James E. "Computer simulation studies of nuclear reactor fuel and related uranium phases". Thesis, Keele University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384936.
Texto completoBiaty, Patricia Andrea Paladino. "Pré-processador matemático para o código Relap5 utilizando o Microsoft Excel". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/85/85133/tde-14052007-141446/.
Texto completoComputational program are used for thermal hydraulic analysis of accidents and transients conditions in nuclear power plants. The RELAP5 code has been developed to simulate accidents and transients conditions, performing a best estimate analysis, in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code, which has been used as a tool for licensing nuclear facilities in Brazil, is the objective of the study performed in this work. The main problem in using the RELAP5 code is the huge amount of information necessary to model the nuclear reactor and thus to simulate thermal-hydraulic accidents. Moreover, the RELAP5 code input data requires a large amount of mathematical operations to calculate the geometry of the plant components. Therefore, in order to make easier the data input for the RELAP5 code a friendly preprocessor has been developed. The preprocessor accepts basic information about the geometry of the plant components and performs all the calculations needed for the RELAP5 input. This preprocessor has been developed based on the MS-EXCEL software.
Dalle, Hugo Moura. "Simulação do reator TRIGA IPR-R1 utilizando metodos de transporte por Monte Carlo". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267210.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-04T19:28:53Z (GMT). No. of bitstreams: 1 Dalle_HugoMoura_D.pdf: 6728358 bytes, checksum: 2c3bf749417a0e9182de201824e76cdd (MD5) Previous issue date: 2005
Resumo: A utilização do método Monte Carlo na simulação do transporte de partículas em reatores nucleares é crescente e constitui uma tendência mundial. O maior inconveniente dessa técnica, a grande exigência de capacidade de processamento, vem sendo superado pelo contínuo desenvolvimento de processadores cada vez mais rápidos. Esse contexto permitiu o desenvolvimento de metodologias de cálculo neutrônico de reatores nas quais se acopla a parte do transporte de partículas, feita com um código de Monte Carlo, ao cálculo de queima e decaimento radioativo. Neste trabalho tal metodologia de simulação é implantada, validada para reatores de pesquisas, notadamente os do tipo TRIGA e finalmente utilizada na simulação neutrônica do reator TRIGA IPR ¿ RI do CDTN/CNEN. O sistema de códigos empregados é constituído pelos amplamente utilizados códigos MCNP4B (transporte por método Monte Carlo) e ORIGEN2.1 (queima e decaimento radioativo). Apesar dos esforços recentes no sentido de agrupar as duas etapas de cálculo, transporte e queima, em um único código, até o momento esta opção não está disponível e, portanto, um terceiro código é utilizado para realizar o acoplamento transporte/queima. Neste trabalho utilizou-se para tal o código MONTEBURNS. O sistema formado por estes três códigos permitiu obter os parâmetros neutrônicos de interesse do IPR ¿ R1 através apenas de simulação teórica, sem a necessidade de qualquer tipo de ajuste baseado em dados experimentais, em boa concordância com os valores medidos... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital
Abstract: The use of Monte Carlo methods in particles transport simulations of nuclear reactor is growing fast and constitutes a strong tendency all over the world. The major inconvenient of such techniques is the huge demand of processing power which has been surpassed the development of reactor physics calculation methodologies in which the particles transport part, made by a Monte Carlo transport code, is linked with the burnup and radioactive decay part of the simulation. On this work a such simulation methodology is made operational, validated for research reactors, mainly for TRIGA reactor and finally utilized for reactor physics simulation of the CDTN¿s TRIGA IPR ¿ R1. The adopted codes system is constituted by the widespreadly used codes MCNP4B (Monte Carlo transport) and ORIGEN2.1 (burnup and radioactive decay). In spite of the very recent efforts toward get together both, transport and burnup, in only one code at the moment this is a not available option and therefore, a third code is needed to carry out the linkage transport/burnup. MONTEBURS code was used to this purpose. This three codes system has allowed to obtain the physical parameters of IPR ¿ R1 calculated using only theoretical simulation without any kind of experimental adjustment or interaction between experiments and calculation in good agreement with measured values... Note: The complete abstract is available with the full electronic digital thesis or dissertations
Doutorado
Sistemas de Processos Quimicos e Informatica
Doutor em Engenharia Química
Bollen, Rob. "Verification and validation of computer simulations with the purpose of licensing a pebble bed modular reactor". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/53216.
Texto completoENGLISH ABSTRACT: The Pebble Bed Modular Reactor is a new and inherently safe concept for a nuclear power generation plant. In order to obtain the necessary licenses to build and operate this reactor, numerous design and safety analyses need to be performed. The results of these analyses must be supported with substantial proof to provide the nuclear authorities with a sufficient level of confidence in these results to be able to supply the required licences. Beside the obvious need for a sufficient level of confidence in the safety analyses, the analyses concerned with investment protection also need to be reliable from the investors’ point of view. The process to be followed to provide confidence in these analyses is the verification and validation process. It is aimed at presenting reliable material against which to compare the results from the simulations. This material for comparison will consist of a combination of results from experimental data, extracts from actual plant data, analytical solutions and independently developed solutions for the simulation of the event to be analysed. Besides comparison with these alternative sources of information, confidence in the results will also be built by providing validated statements on the accuracy of the results and the boundary conditions with which the simulations need to comply. Numerous standards exist that address the verification and validation of computer software, for instance by organisations such as the American Society of Mechanical Engineers (ASME) and the Institute of Electrical and Electronics Engineers (IEEE). The focal points of the verification and validation of the design and safety analyses performed on typical PBMR modes and states, and the requirements imposed by both the local and overseas nuclear regulators, are not entirely enveloped by these standards. For this reason, PBMR developed a systematic and disciplined approach for the preparation of the Verification and Validation Plan, aimed at capturing the essence of the analyses. This approach aims to make a definite division between software development and the development of technical analyses, while still using similar processes for the verification and validation. The reasoning behind this is that technical analyses are performed by engineers and scientists who should only be responsible for the verification and validation of the models and data they use, but not for the software they are dependent on. Software engineers should be concerned with the delivery of qualified software to be used in the technical analyses. The PBMR verification and validation process is applicable to both hand calculations and computer-aided analyses, addressing specific requirements in clearly defined stages of the software and Technical Analysis life cycle. The verification and validation effort of the Technical Analysis activity is divided into the verification and validation of models and data, the review of calculational tasks, and the verification and validation of software, with the applicable information to be validated, captured in registers or databases. The resulting processes are as simple as possible, concise and practical. Effective use of resources is ensured and internationally accepted standards have been incorporated, aiding in faith in the process by all stakeholders, including investors, nuclear regulators and the public.
AFRIKAASE OPSOMMING: Die Modulêre Korrelbedreaktor is ’n nuwe konsep vir ’n kernkragsentrale wat inherent veilig is. Dit word deur PBMR (Edms.) Bpk. ontwikkel. Om die nodige vergunnings om so ’n reaktor te kan bou en bedryf, te bekom, moet ’n aansienlike hoeveelheid ontwerp- en veiligheidsondersoeke gedoen word. Die resultate wat hierdie ondersoeke oplewer, moet deur onweerlegbare bewyse ondersteun word om vir die owerhede ’n voldoende vlak van vertroue in die resultate te gee, sodat hulle die nodigde vergunnings kan maak. Benewens die ooglopende noodsaak om ’n voldoende vlak van vertroue in die resultate van die veiligheidsondersoeke te hê, moet die ondersoeke wat met die beskerming van die beleggers se beleggings gepaard gaan, net so betroubaar wees. Die proses wat gevolg word om vertroue in die resultate van die ondersoeke op te bou, is die proses van verifikasie en validasie. Dié proses is daarop gerig om betroubare vergelykingsmateriaal vir simulasies voor te lê. Hierdie vergelykingsmateriaal vir die gebeurtenis wat ondersoek word, sal bestaan uit enige kombinasie van inligting wat in toetsopstellings bekom is, wat in bestaande installasies gemeet is, wat analities bereken is; asook dit wat deur ’n derde party onafhanklik van die oorspronklike ontwikkelaars bekom is. Vertroue in die resultate van die ondersoeke sal, behalwe deur vergelyking met hierdie alternatiewe bronne van inligting, ook opgebou word deur die resultate te voorsien van ’n gevalideerde verklaring wat die akkuraatheid van die resultate aantoon en wat die grensvoorwaardes waaraan die simulasies ook moet voldoen, opsom. Daar bestaan ’n aansienlike hoeveelheid internasionaal aanvaarde standaarde wat die verifikasie en validasie van rekenaarsagteware aanspreek. Die standaarde kom van instansies soos die Amerikaanse Vereniging vir Meganiese Ingenieurs (ASME) en die Instituut vir Elektriese en Elektroniese Ingenieurs (IEEE) – ook van Amerika. Die aandag wat deur die Suid-Afrikaanse en oorsese kernkragreguleerders vereis word vir die toestande wat spesifiek geld vir korrelbedreaktors, word egter nie geheel en al deur daardie standaarde aangespreek nie. Daarom het die PBMR maatskappy ’n stelselmatige benadering ontwikkel om verifikasie- en validasieplanne voor te berei wat die essensie van die ondersoeke kan ondervang. Hierdie benadering is daarop gemik om ’n duidelike onderskeid te maak tussen die ontwikkeling van sagteware en die ontwikkeling van tegniese ondersoeke, terwyl steeds gelyksoortige prosesse in die verifikasie en validasie gebruik sal word. Die rede hiervoor is dat tegniese ondersoeke uitgevoer word deur ingenieurs en wetenskaplikes wat net vir verifikasie en validasie van hulle eie modelle en die gegewens verantwoordelik gehou kan word, maar nie vir die verifikasie en validasie van die sagteware wat hulle gebruik nie. Ingenieurs wat spesialiseer in sagteware-ontwikkeling behoort verantwoordelik te wees vir die daarstelling van sagteware wat deur die reguleerders gekwalifiseer kan word, sodat dit in tegniese ondersoeke op veiligheidsgebied gebruik kan word. Die verifikasie- en validasieproses van die PBMR is sowel vir handberekeninge as vir rekenaarondersteunde-ondersoek geskik. Hierdie proses spreek spesifieke vereistes in onderskeie stadiums gedurende die lewenssiklusse van die ontwikkeling van sagteware en van tegniese ondersoeke aan. Die verifikasie- en validasiewerk vir tegniese ondersoeksaktiwiteite is verdeel in die verifikasie en validasie van modelle en gegewens, die nasien van berekeninge en die verifikasie en validasie van sagteware, waarby die betrokke inligting wat gevalideer moet word, versamel word in registers of databasisse. Die prosesse wat hieruit voortgevloei het, is so eenvoudig as moontlik, beknop en prakties gehou. Hierdeur is ’n effektiewe benutting van bronne verseker. Internasionaal aanvaarde standaarde is gebruik wat die vertroue in die proses deur alle betrokkenes, insluitende beleggers, die owerhede en die publiek, sal bevorder.
Revel, Aldric. "Nuclear forces at the extremes". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC227/document.
Texto completoThe emission of neutron pairs from the neutron-rich N = 12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay 19N(−1p) → 18C → 16C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21O(−1n) → 20O → 18O+n+n, attributed to its formation through the knockout of a deeply-bound neutron that breaks the 16O core and reduces the number of pairs.Moreover, unbound states in 26F and 28F have been studied. The two systems were probed using single-nucleon knockout reaction from secondary beams of 27F respectively in the case of 26F, and 29Ne and 29F for 28F. Five possible states have been identified in 26F, with in particular the lowest energy one (0.39 MeV) being identified as the 3+ state resulting from the d5/2 ⊗ d3/2 coupling. In the case of 28F, five unbound state have also been observed and in particular its ground state (200 keV) has been identified as a negative parity state, meaning that 28F is located inside the island of inversion
Tshamala, Mubenga Carl. "Simulation and control implications of a high-temperature modular reactor (HTMR) cogeneration plant". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86264.
Texto completoENGLISH ABSTRACT: Traditionally nuclear reactor power plants have been optimised for electrical power generation only. In the light of the ever-rising cost of dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is optimised for the simultaneous production of superheated steam for electrical power generation and process heat is considered and analysed. The process heat superheated steam is generated in a once-through steam generator of heat pipe heat exchanger with intermediate fluid while steam for power generation is generated separately in a once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled HTMR has been conceptually designed to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a coal-to-liquid fuel process. The simulation and dynamic control of such a typical cogeneration plant is considered. In particular, a theoretical model of a typical plant will be simulated with the aim of predicting the transient and dynamic behaviour of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behaviour of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.
AFRIKAANSE OPSOMMING: Tradisioneel is kernkragaanlegte vir slegs elektriese kragopwekking geoptimeer. In die lig van die immer stygende koste van uitputbare fossielbrandstohulpbronne asook die besoedelingsimpak daarvan wêreldwyd, word die gebruik van kernkrag vir prosesverhitting al hoe meer aanlokliker. In hierdie studie word die gebruik van ‘n sogenaamde mede-opwekkingsaanleg waarin ‘n kernkragreaktor-energiebron vir die gelyktydige produksie van oorverhitte stoom vir elektriese kragopwekking en proseshitte oorweeg ontleed word. Die oorvehitte stoom word in ‘n enkeldeurvloei-stoomopwekking van die hittepyp-hitteruiler met tussenvloeistof opgewek en stoom vir kragopwekking word apart in ‘n enkeldeurvloei-spiraalspoel-stoomopwekker opgewek. ‘n 750 °C, 7 MPa heliumverkoelde HTMR is konseptueel ontwerp vir die gelytydige veskaffing van stoom by 540 °C, 13.5 MPa, vir die kragopwekkings eenheid, en stoom by 430 °C, 4 MPa, vir ‘n steenkool-tot-vloeibare (CTL) brandstoff proses. Die simulasie en dinamiese beheer van ‘n tipiese HTMR mede-opwekkingsaanleg word beskou. ‘n die besonder word ‘n teoretiese model van die transiënte en dinamiese gedrag van die aanleg gesimuleer om sodoene riglyne te identifiseer vir die ontwikkeling van dinamiese beheer strategië vir verskillende werkstoestande van die aanleg. Daar was ook gevind dat die simulasie model van die aanleg se gedrag goed nageboots word en dat dit dus gebruik kan word vir beheer strategie doeleindes. Indien so ‘n 1500 MW-termies HTMR gebruik word sal dit die Suid Afrikaanse besoedling met 1.58% sal kan verminder.
SILVESTRE, LARISSA J. B. "PCRELAP5 - Programa de cálculo para os dados de entrada do código RELAP5". reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/26393.
Texto completoMade available in DSpace on 2016-06-22T14:12:07Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
PERRENOUD, HELENA G. "Modulo de extracao de eventos em assinaturas de potencia de valvulas moto-operadas, usando um sistema especialista para o sistema de diagnostico de MOV's utilizado em reatores nucleares". reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10967.
Texto completoMade available in DSpace on 2014-10-09T14:01:40Z (GMT). No. of bitstreams: 1 07970.pdf: 7550264 bytes, checksum: 59898e15f47566b782c4f5d17f6a0287 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Kruckenberg, Norman E. "A piping network model program for small computer". Ohio : Ohio University, 1986. http://www.ohiolink.edu/etd/view.cgi?ohiou1183138191.
Texto completoLibros sobre el tema "Nuclear reactors – Computer simulation"
Puska, Eija Karita. Nuclear reactor core modelling in multifunctional simulators. Espoo [Finland]: Technical Research Centre of Finland, 1999.
Buscar texto completoKlein, M. E. Simulation of in-reactor experiments with the ELOCA.Mk5 code. Chalk River, Ont: Chalk River Laboratories, 1994.
Buscar texto completoKim, K. Assessment of RELAP5/MOD2 critical flow model using Marviken test data 15 and 24. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.
Buscar texto completoKim, Kyu-Soo. Assessment of RELAP5/MOD2 critical flow model using Marviken test data 15 and 24. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1992.
Buscar texto completoMayya, Y. S. Containment aerosol behaviour simulation studies in the BARC nuclear aerosol test facility. Mumbai: Bhabha Atomic Research Centre, 2005.
Buscar texto completoHämäläinen, A. Applying thermal hydraulics modeling in coupled processes of nuclear power plants. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.
Buscar texto completoRoss, Kyle. MELCOR best practices as applied in the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2014.
Buscar texto completoLlopis, C. Assessment of RELAP5/MOD3.2-NPA3.4 against an inadvertent closure of all three MSIV's in VANDELLOS-II nuclear power plant. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2001.
Buscar texto completoWeingardt, Jay J. TAC2D studies of Mark I containment drywell shell melt-through. Washington, DC: Division of Reactor Accident Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Buscar texto completoAnalytis, G. Th. Assessment of interfacial shear and wall heat transfer of RELAP5/MOD2/36.02 during reflooding. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Nuclear reactors – Computer simulation"
Fauquet-Alekhine, Philippe y Carole Maridonneau. "Piloting Nuclear Reactors". En Simulation Training: Fundamentals and Applications, 59–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19914-6_3.
Texto completoLopez-Munguia, Agustin. "Simulation of Batch Enzyme Reactors". En Computer and Information Science Applications in Bioprocess Engineering, 179–89. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0177-3_15.
Texto completoKohler, W. y M. Schindler. "Two Phase Flow Analysis Capability of Advanced Computer Codes". En Nuclear Simulation, 133–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84279-5_10.
Texto completoGraf, U. y W. F. Werner. "Experience with Simulation of Nuclear Systems on Parallel Processing Computer Systems". En Nuclear Simulation, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84279-5_1.
Texto completoMüller, R., R. Böer y H. Finnemann. "Nuclear Core and Power Plant Simulation on High Performance Parallel Computer Systems". En Nuclear Simulation, 104–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84279-5_8.
Texto completoBakker, R., E. Große-Dunker y P. Leishman. "Hydraulic Network Modelling for Real-Time Power Plant Simulation with Computer Aided Code Generation". En Nuclear Simulation, 25–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84279-5_3.
Texto completoWallner, M. "Computer Simulation of the Long-Term Stability of a NuclearWaste Repository in a Salt Dome". En Nuclear Simulation, 326–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83221-5_21.
Texto completoHughes, G. y R. S. Overton. "The Monte Carlo Simulation of Thermal Noise in Fast Reactors". En Noise and Nonlinear Phenomena in Nuclear Systems, 313–38. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5613-4_26.
Texto completoJurs, Peter C. y Debra S. Egolf. "Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation". En Computer-Enhanced Analytical Spectroscopy, 163–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5368-3_8.
Texto completoRodríguez-Hernandez, Andrés, Armando M. Gómez-Torres, Edmundo del Valle-Gallegos, Javier Jimenez-Escalante, Nico Trost y Victor H. Sanchez-Espinoza. "Accelerating AZKIND Simulations of Light Water Nuclear Reactor Cores Using PARALUTION on GPU". En Communications in Computer and Information Science, 419–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32243-8_29.
Texto completoActas de conferencias sobre el tema "Nuclear reactors – Computer simulation"
Ablay, Gunyaz. "Modeling and simulation of advanced nuclear reactors". En 2013 International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2013. http://dx.doi.org/10.1109/icecco.2013.6718250.
Texto completoChegrani, Yacine, Corinne d’Aletto, Jacques Di Salvo y Evgeny Ivanov. "Validation of SIMMER-III Neutronics Module for the Simulation of Reactivity Injection Accident in Material Testing Reactors". En 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29188.
Texto completoPeter, Geoffrey J. "Numerical Simulation of Accident Scenario in HTGR (Pebble Bed Reactor) Using COMSOL® Code". En 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16535.
Texto completoOhshima, Hiroyuki y Masahiko Ohtaka. "Development of Computer Program for Whole Core Thermal-Hydraulic Analysis of Fast Reactors". En 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22034.
Texto completoBottoni, Maurizio, Claudio Bottoni y John Scanu. "Molecular Dynamic Simulation of Sodium in 7-Pin LMFBR Bundle Under Hypothetical Accident Conditions". En 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89144.
Texto completoMadaras, Attila, Sa´ndor Deme, Zolta´n Ho´zer, Edit La´ng, Istva´n Ne´meth, Tama´s Pa´zma´ndi y Pe´ter Sza´nto´. "A New Simulation Code for Analyzing Loss of Coolant Accidents in VVER-440/213 Reactors Concerning Activity Transport". En 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75306.
Texto completoHuang, Shanfang, Yaopeng Gong, Chao Li, Ruilong Liu, Jiageng Wang y Kan Wang. "Numerical Simulation for Nuclear Engineering Education: A Case Study in a Course “Advanced Nuclear Reactor Thermal Analysis”". En 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81042.
Texto completoJanosy, Janos Sebestyen, Andras Kereszturi, Gabor Hazi, Jozsef Pales y Endre Vegh. "Real-Time 3D Simulation of a Pressurized Water Nuclear Reactor". En 2010 12th International Conference on Computer Modelling and Simulation. IEEE, 2010. http://dx.doi.org/10.1109/uksim.2010.83.
Texto completoMladin, Mirea y Daniela Mladin. "Simulation of B9401 Test in the RD-14M Experimental Facility With CATHARE2". En 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29320.
Texto completoQi, Yingxia y Minoru Takahashi. "Computer Simulation of Diffusion of Pb-Bi Eutectic in Liquid Sodium by Molecular Dynamics Method". En 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22236.
Texto completoInformes sobre el tema "Nuclear reactors – Computer simulation"
Kamegai, M. Computer simulation of underwater nuclear events. Office of Scientific and Technical Information (OSTI), septiembre de 1986. http://dx.doi.org/10.2172/5275001.
Texto completoMartin, William. Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors. Office of Scientific and Technical Information (OSTI), noviembre de 2012. http://dx.doi.org/10.2172/1058919.
Texto completoKroeger, P. G., R. J. Kennett, J. Colman y T. Ginsberg. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors. Office of Scientific and Technical Information (OSTI), octubre de 1991. http://dx.doi.org/10.2172/6239042.
Texto completoFerguson, Jim, Peter Brown y Larry Jacobsen. Computer Simulation of Nuclear Well Logging Devices Final Report CRADA No. TC-824-94F. Office of Scientific and Technical Information (OSTI), abril de 1998. http://dx.doi.org/10.2172/1438796.
Texto completoFerguson, James M., Larry Jacobson y Daniel Johnson. Computer Simulation of Nuclear Well Logging Devices: Final Report CRADA No. TC-1114-95. Office of Scientific and Technical Information (OSTI), octubre de 2000. http://dx.doi.org/10.2172/1410084.
Texto completoLee, C. H. y H. C. Lee. Verification and Validation of High-Fidelity Multi-Physics Simulation Codes for Advanced Nuclear Reactors (Year 2). Office of Scientific and Technical Information (OSTI), junio de 2014. http://dx.doi.org/10.2172/1134005.
Texto completoRosa, M. P. y M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), septiembre de 1995. http://dx.doi.org/10.2172/107760.
Texto completo