Literatura académica sobre el tema "Numerical implementation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Numerical implementation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Numerical implementation"
Mikeš, Karel y Milan Jirásek. "Free Warping Analysis and Numerical Implementation". Applied Mechanics and Materials 825 (febrero de 2016): 141–48. http://dx.doi.org/10.4028/www.scientific.net/amm.825.141.
Texto completoNairn, John A. "Numerical implementation of imperfect interfaces". Computational Materials Science 40, n.º 4 (octubre de 2007): 525–36. http://dx.doi.org/10.1016/j.commatsci.2007.02.010.
Texto completoLee, Chun Jin. "The numerical implementation of risk". Korean Journal of Computational & Applied Mathematics 2, n.º 2 (septiembre de 1995): 53–61. http://dx.doi.org/10.1007/bf03008963.
Texto completoLinderberg, Jan, So/ren B. Padkjær, Yngve Öhrn y Behnam Vessal. "Numerical implementation of reactive scattering theory". Journal of Chemical Physics 90, n.º 11 (junio de 1989): 6254–65. http://dx.doi.org/10.1063/1.456342.
Texto completoDoong, T. y I. Mayergoyz. "On numerical implementation of hysteresis models". IEEE Transactions on Magnetics 21, n.º 5 (septiembre de 1985): 1853–55. http://dx.doi.org/10.1109/tmag.1985.1063923.
Texto completoJAUSLIN, H. R. "NUMERICAL IMPLEMENTATION OF A K.A.M. ALGORITHM". International Journal of Modern Physics C 04, n.º 02 (abril de 1993): 317–22. http://dx.doi.org/10.1142/s0129183193000331.
Texto completoEinziger, P. D. "Numerical implementation of the Gabor representation". Electronics Letters 24, n.º 13 (1988): 810. http://dx.doi.org/10.1049/el:19880551.
Texto completoCardelli, E., E. Della Torre y A. Faba. "Numerical Implementation of the DPC Model". IEEE Transactions on Magnetics 45, n.º 3 (marzo de 2009): 1186–89. http://dx.doi.org/10.1109/tmag.2009.2012549.
Texto completoLow, K. H. "Numerical implementation of structural dynamics analysis". Computers & Structures 65, n.º 1 (octubre de 1997): 109–25. http://dx.doi.org/10.1016/s0045-7949(95)00338-x.
Texto completoBabolian, E. y A. Davari. "Numerical implementation of Adomian decomposition method". Applied Mathematics and Computation 153, n.º 1 (mayo de 2004): 301–5. http://dx.doi.org/10.1016/s0096-3003(03)00646-5.
Texto completoTesis sobre el tema "Numerical implementation"
Vinikoff, Nicolas. "Numerical Control: Performance Analysis and Implementation Issues". Thesis, KTH, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101797.
Texto completoSchwarz, Cornelia. "Numerical implementation of continuum dislocation-based plasticity". kostenfrei, 2007. http://mediatum2.ub.tum.de/doc/618976/document.pdf.
Texto completoCASTAGNOLI, JOAO PAULO. "NUMERICAL IMPLEMENTATION OF ACOPPLING SURFACE WATER: GROUNDWATER". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11037@1.
Texto completoCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A relação entre os processos hidrológicos de escoamento superficial e subterrâneo apresenta uma grande variabilidade espacial e temporal. Podendo ser representado de forma qualitativa como parte sequêncial do ciclo hidrológico, estes processos, demostram sua grande dependência e importância nos estudos de balanços hídricos. Visando uma representação quantitativa, este trabalho faz o acoplamento, entre os modelos numéricos de escoamento superficial e de fluxo em meios porosos. Para o meio poroso adotou-se o modelo numérico SWMS_3D (Simunek et al, 1995), o qual resolve a equação de Richards, para fluxo em meios porosos saturados e não saturados nas três dimensões. Na simulação da dinâmica superficial, foram desenvolvidos dois modelos derivados das equações de Saint- Venant: o modelo da Onda Cinemática e o modelo de Difusão. Para a solução numérica foi empregado o método dos elementos finitos através da formulaçao de Galerkin, adotando uma malha tridimensional de elementos tetraédricos, formando uma sub-malha de elementos triangulares na superfície. O modelo de escoamento superficial emprega a malha triangular e interage com o programa SWMS_3D modificado (que utiliza a malha de tetraédros) através das imposições das condições de contorno transientes. Este, responderá com uma parcela de fluxo correspondente à recarga ou descarga no contorno a cada passo de tempo. Com isso, o modelo gerado é capaz de quantificar espacialmente e temporalmente as cargas de pressão em todos os pontos do domínio de estudo.
While analyzing the interaction between the hydrological processes of surface and groundwater flow, it is seen that there is a big difference in its interaction in the space and time. These processes can be represented in a qualitative form as part of the hydrological cycle, demonstrating its dependences and importance in the hydrological balance. This work does the numerical coupling of the surface and groundwater flow. This work adopted the SWMS_3D numerical model (Simunek et. al., 1995), which resolves the Richards equation for saturated and non saturated porous media flow in 3D. In order to simulate the superficial dynamic flow, two models from Saint-Vennat equation were developed, these models are: the cinematic wave model and the diffusion model. These two models consider the average outflow in sections in a 2D scenario. For the numerical solution the finite element method was adopted through the Galerkin formulation. Adopting a 3D domain mesh of tetrahedral elements, seen from above, in 2D, we can see a triangular element mesh. The superficial flow model uses the triangular mesh and iterates with the SWMS_3D modified software, which uses the tetrahedral elements mesh. This was done by changes in the boundary conditions to the models. The SWMS_3D will answer with a flow portion corresponding to a sink or source action in the surface, in each time step. Finally the generated model is able to quantify in space and in time the pressure head in the study domain.
Herdiana, Ratna. "Numerical methods for SDEs - with variable stepsize implementation /". [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Texto completoFooladi, Samaneh y Samaneh Fooladi. "Numerical Implementation of Elastodynamic Green's Function for Anisotropic Media". Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/623144.
Texto completoSotolongo, Wilfredo. "On the numerical implementation of cyclic elasto-plastic material models". Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/17594.
Texto completoQUISPE, ROBERTO JUAN QUEVEDO. "NUMERICAL IMPLEMENTATION FOR 3D ANALYSIS OF TRANSIENT FLOW IN DAMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12189@1.
Texto completoEsta dissertação tem por objetivo a implementação de uma ferramenta numérica para avaliação do fluxo transiente 3D saturado-não saturado em barragens de terra e enrocamento, baseado no método dos elementos finitos e no programa GEOFLUX implementado por Machado Jr. (2000) para análise de problemas 2D. Nesta nova versão, foram incluídos elementos triangulares de 3 nós para análises 2D e elementos tetraédricos de 4 nós para análises 3D. Implementam-se também subrotinas que oferecem a possibilidade de variação das condições de contorno com o tempo. A equação de Richards é solucionada considerando a formulação mista e o método iterativo de Picard Modificado para solução do sistema de equações não- lineares. Para a solução do sistema de equações utiliza-se um armazenamento especial para matrizes esparsas associado com o método do gradiente bi-conjugado, tornando o processo muito rápido, mesmo em sistemas de grande porte. Utilizam- se dois modelos para representar as curvas características: o modelo exponencial proposto por Srivastava e Yeh (1991) e o modelo proposto por van Genuchten (1980). O programa computacional desenvolvido (GEOFLUX3D) foi aplicado na análise de fluxo na barragem de enrocamento de Gouhou, China, e na barragem de terra Macusani, Peru. Os resultados numéricos indicam a necessidade de análises numéricas 3D em barragens situadas em vales estreitos, onde os efeitos de geometria nas condições de fluxo são significativos e não podem ser ignorados.
The main objective of this thesis is to implement a numerical tool for the evaluation of 3D saturated / unsaturated transient flow through earth and rockfill dams with basis on the finite element method and a computer program written by Machado Jr. (2000) for analysis of similar 2D flow problems. In the 3D version, developed in this thesis, four-nodes tetrahedral elements were implement as well as special subroutines that make possible to vary in time the boundary conditions. The Richards` equation is solved through a mixed formulation, for the solution of the non-linear system of equations a Modified Picard`s method is employed. A special algorithm is used to store the sparse matrices which, in association with the bi-conjugated gradient method, rend the solver computationally very efficient, even for a large number of equations. Two different models were used to represent the characteristic curves: the exponential curve proposed by Srivastava and Yeh (1991) and the formulation suggested by van Genuchten (1980). The improved computer program, thereafter named GEOFLUX3D, was then applied for flow analysis of the Gouhou rockfill dam (China) and the Macusani earth dam (Peru). Numerical results point out that 3D numerical analyses are necessary for dams situated in narrow valleys, where the influence of the terrain geometry on the flow conditions are quite significant and cannot be just ignored.
Mashalaba, Qaphela. "Implementation of numerical Fourier method for second order Taylor schemes". Master's thesis, Faculty of Commerce, 2019. http://hdl.handle.net/11427/30978.
Texto completoChun, Byung Kwan. "Study on hardening models and numerical implementation for springback prediction /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486397841222103.
Texto completoHe, Ting. "[pi]Mesh : practical implementation of a low-cost wireless mesh for indoor networking /". View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?CSED%202010%20HE.
Texto completoLibros sobre el tema "Numerical implementation"
Tijhuis, A. G. Electromagnetic inverse profiling: Theory and numerical implementation. Utrecht, The Netherlands: VNU Science Press, 1987.
Buscar texto completoM, Rajendran A. y Batra R. C, eds. Constitutive laws: Theory, experiments and numerical implementation. Barcelona: International Center for Numerical Methods in Engineering, 1995.
Buscar texto completoCenter, Ames Research, ed. Parallel implementation of an algorithm for Delaunay triangulation. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Buscar texto completo1969-, Chartier Timothy P., ed. Numerical methods: Design, analysis, and computer implementation of algorithms. Princeton, NJ: Princeton University Press, 2012.
Buscar texto completoCenter, Langley Research, ed. Implementation of an ADI method on parallel computers. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completoLinear systems: A state variable approach with numerical implementation. Englewood Cliffs, N.J: Prentice Hall, 1989.
Buscar texto completoOverby, Alan. CNC machining handbook: Building, programming, and implementation. New York, NY: McGraw-Hill/TAB Electronics, 2010.
Buscar texto completoJ, Bockelie Michael y Langley Research Center, eds. A comparison of using APPL and PVM for a parallel implementation of an unstructured grid generation problem. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoStanley, Osher y Langley Research Center, eds. Efficient implementation of essentially non-oscillatory shock capturing schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completoLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43432-1.
Texto completoCapítulos de libros sobre el tema "Numerical implementation"
Turek, Ilja, Václav Drchal, Josef Kudrnovský, Mojmír Šob y Peter Weinberger. "Numerical Implementation". En Electronic Structure of Disordered Alloys, Surfaces and Interfaces, 287–309. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6255-9_10.
Texto completoKitagawa, Koichi. "Numerical Implementation". En Boundary Element Analysis of Viscous Flow, 42–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84029-6_3.
Texto completoNaomis, Steve y Paul C. M. Lau. "Numerical Implementation". En Lecture Notes in Engineering, 101–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84243-6_4.
Texto completoMadenci, Erdogan, Atila Barut y Mehmet Dorduncu. "Numerical Implementation". En Peridynamic Differential Operator for Numerical Analysis, 39–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02647-9_3.
Texto completoMartínez Pañeda, Emilio. "Numerical Implementation". En Springer Theses, 33–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63384-8_3.
Texto completoSanz-Serna, J. M. y M. P. Calvo. "Implementation". En Numerical Hamiltonian Problems, 53–68. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3093-4_5.
Texto completoBoudreau, Bernard P. "Numerical Methods". En Diagenetic Models and Their Implementation, 297–360. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60421-8_8.
Texto completoSeifi, Hossein y Hamed Delkhosh. "Implementation and Numerical Results". En Model Validation for Power System Frequency Analysis, 37–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2980-7_4.
Texto completoChen, Chuchu, Jialin Hong y Lihai Ji. "Implementation of Numerical Experiments". En Lecture Notes in Mathematics, 215–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6686-8_6.
Texto completoLiseikin, Vladimir D. "Numerical Implementation of Grid Generator". En Scientific Computation, 241–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05415-4_9.
Texto completoActas de conferencias sobre el tema "Numerical implementation"
Singh, Gagandeep, Markus Püschel y Martin Vechev. "Making numerical program analysis fast". En PLDI '15: ACM SIGPLAN Conference on Programming Language Design and Implementation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2737924.2738000.
Texto completoAlfalou, A., C. Brosseau, B. E. Benkelfat, S. Qasmi y I. Léonard. "Towards all-numerical implementation of correlation". En SPIE Defense, Security, and Sensing, editado por David P. Casasent y Tien-Hsin Chao. SPIE, 2012. http://dx.doi.org/10.1117/12.919378.
Texto completoZhao, Yidi. "Numerical Implementation of Gauge-Fixed FourierAcceleration". En The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0026.
Texto completoCavalcanti, C., H. Correia, A. Castro y J. L. Alves. "Constituive modelling of the annulus fibrosus: Numerical implementation and numerical analysis". En 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518408.
Texto completoBrugnano, Luigi, Felice Iavernaro, Tiziana Susca, Theodore E. Simos, George Psihoyios y Ch Tsitouras. "Hamiltonian BVMs (HBVMs): Implementation Details and Applications". En NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241568.
Texto completoHe, Jingxuan, Gagandeep Singh, Markus Püschel y Martin Vechev. "Learning fast and precise numerical analysis". En PLDI '20: 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3385412.3386016.
Texto completoFoote, W., J. Kraemer y G. Foster. "APL2 implementation of numerical asset pricing models". En the international conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/55626.55643.
Texto completoPanahi, Ashkan, Mats Viberg y Babak Hassibi. "A numerical implementation of gridless compressed sensing". En ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178590.
Texto completovan Stralen, Mattheus J. N., Maarten V. de Hoop y Hans Blok. "Numerical Implementation of the Bremmer Coupling Series". En Integrated Photonics Research. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ipr.1996.imb4.
Texto completoLebrun, M., J. Darbon y J. M. Morel. "A Numerical Implementation of Landscape Evolution Models". En Second Conference on Forward Modelling of Sedimentary Systems. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201600381.
Texto completoInformes sobre el tema "Numerical implementation"
Weinacht, Daniel J. Coupled elastic-plastic thermomechanically assisted diffusion: Theory development, numerical implementation, and application. Office of Scientific and Technical Information (OSTI), diciembre de 1995. http://dx.doi.org/10.2172/176804.
Texto completoHerrmann, Leonard R., Victor Kaliakin y C. K. Shen. Improved Numerical Implementation of the Bounding Surface Plasticity Model for Cohesive Soils. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1985. http://dx.doi.org/10.21236/ada163572.
Texto completoBaczewski, Andrew David, Luke Shulenburger, Michael Paul Desjarlais y Rudolph J. Magyar. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments. Office of Scientific and Technical Information (OSTI), febrero de 2014. http://dx.doi.org/10.2172/1204090.
Texto completoDing, Yan, Q. Chen, Ling Zhu, Julie Rosati y Bradley Johnson. Implementation of flexible vegetation into CSHORE for modeling wave attenuation. Engineer Research and Development Center (U.S.), febrero de 2022. http://dx.doi.org/10.21079/11681/43220.
Texto completoWarne, Larry y William Johnson. Capacitive/Inductive Corrections for Numerical Implementation of Thin-Slot Transmission Line Models and Other Useful Formulas. Office of Scientific and Technical Information (OSTI), octubre de 2022. http://dx.doi.org/10.2172/1891445.
Texto completoMichaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb y Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), enero de 2021. http://dx.doi.org/10.21079/11681/42782.
Texto completoLewis, Matthew W. Numerical Implementation of an Invariant-Based Model for Foamed Elastomers with Strain Softening and Nonlinear Time Dependent Response. Office of Scientific and Technical Information (OSTI), septiembre de 2018. http://dx.doi.org/10.2172/1469496.
Texto completoPaschen, Marius, Felix Meier y Wilfried Rickels. Working paper on the numerical modelling framework to compare different accounting schemes. OceanNets, agosto de 2023. http://dx.doi.org/10.3289/oceannets_d1.1_v3.
Texto completoSavant, Gaurav, Rutherford Berger, Corey Trahan y Gary Brown. Theory, formulation, and implementation of the Cartesian and spherical coordinate two-dimensional depth-averaged module of the Adaptive Hydraulics (AdH) finite element numerical code. Engineer Research and Development Center (U.S.), junio de 2020. http://dx.doi.org/10.21079/11681/36993.
Texto completoTer-Minassian, Teresa. Preconditions for a Successful Introduction of Structural Fiscal Balance-based Rules in Latin America and the Caribbean: A Framework Paper. Inter-American Development Bank, octubre de 2010. http://dx.doi.org/10.18235/0006940.
Texto completo