Literatura académica sobre el tema "Object Based Image Analysis (OBIA)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Object Based Image Analysis (OBIA)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Object Based Image Analysis (OBIA)"
Kavzoglu, T., M. Yildiz Erdemir y H. Tonbul. "A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (21 de junio de 2016): 241–47. http://dx.doi.org/10.5194/isprsarchives-xli-b7-241-2016.
Texto completoKavzoglu, T., M. Yildiz Erdemir y H. Tonbul. "A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (21 de junio de 2016): 241–47. http://dx.doi.org/10.5194/isprs-archives-xli-b7-241-2016.
Texto completoSofyan, Agus. "Classification of Land Cover by Using Aerial Photo At CV. Alaska Prima Coal, Cooling Village, Sanga-Sanga Sub-district, Kutai Kartanegara District, East Kalimantan Province". AGRIFOR 17, n.º 1 (9 de marzo de 2018): 1. http://dx.doi.org/10.31293/af.v17i1.3090.
Texto completoKavzoglu, T. y M. Yildiz. "Parameter-Based Performance Analysis of Object-Based Image Analysis Using Aerial and Quikbird-2 Images". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-7 (19 de septiembre de 2014): 31–37. http://dx.doi.org/10.5194/isprsannals-ii-7-31-2014.
Texto completoZatelli, P., S. Gobbi, C. Tattoni, N. La Porta y M. Ciolli. "OBJECT-BASED IMAGE ANALYSIS FOR HISTORIC MAPS CLASSIFICATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W14 (23 de agosto de 2019): 247–54. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w14-247-2019.
Texto completoBlaschke, T., S. Lang, D. Tiede, M. Papadakis y A. Györi. "OBJECT-BASED IMAGE ANALYSIS BEYOND REMOTE SENSING – THE HUMAN PERSPECTIVE". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (22 de junio de 2016): 879–82. http://dx.doi.org/10.5194/isprs-archives-xli-b7-879-2016.
Texto completoBlaschke, T., S. Lang, D. Tiede, M. Papadakis y A. Györi. "OBJECT-BASED IMAGE ANALYSIS BEYOND REMOTE SENSING – THE HUMAN PERSPECTIVE". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (22 de junio de 2016): 879–82. http://dx.doi.org/10.5194/isprsarchives-xli-b7-879-2016.
Texto completoFernandez Galarreta, J., N. Kerle y M. Gerke. "UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning". Natural Hazards and Earth System Sciences 15, n.º 6 (1 de junio de 2015): 1087–101. http://dx.doi.org/10.5194/nhess-15-1087-2015.
Texto completoFernandez Galarreta, J., N. Kerle y M. Gerke. "UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning". Natural Hazards and Earth System Sciences Discussions 2, n.º 9 (2 de septiembre de 2014): 5603–45. http://dx.doi.org/10.5194/nhessd-2-5603-2014.
Texto completoApriyanto, Dwi Putra, I. Nengah Surati Jaya y Nining Puspaningsih. "Examining the object-based and pixel-based image analyses for developing stand volume estimator model". Indonesian Journal of Electrical Engineering and Computer Science 15, n.º 3 (1 de septiembre de 2019): 1586. http://dx.doi.org/10.11591/ijeecs.v15.i3.pp1586-1596.
Texto completoTesis sobre el tema "Object Based Image Analysis (OBIA)"
Ortega-García, José Antonio. "Forest stand delineation through remote sensing and Object-Based Image Analysis". Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-28005.
Texto completoNo
Chima, C. I. "Monitoring and modelling of urban land use in Abuja Nigeria, using geospatial information technologies". Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/286e264c-3d26-4448-8049-6f2ef3fda727/1.
Texto completoInomata, Takeshi, Flory Pinzón, José Luis Ranchos, Tsuyoshi Haraguchi, Hiroo Nasu, Juan Carlos Fernandez-Diaz, Kazuo Aoyama y Hitoshi Yonenobu. "Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala". MDPI AG, 2017. http://hdl.handle.net/10150/624959.
Texto completoPedrassoli, Júlio César. "Análise orientada a objeto para detecção de favelas e classificação do uso do solo em Taboão da Serra/SP". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-03052012-085635/.
Texto completoThe accelerated growth of the cities and the reflections of the increase of the urban population has been a constant concern nowadays. In this process, the occurrence of precarious occupancies, mainly in the metropolitan regions, has become one of the most explicit characteristics, describing the logic of occupancy itself, unequal use and right to the territory. The monitoring of these areas, their lineup and expansion, are an increasing need in several places in the world, as the inclusion of these areas in the formal city is considered a trigger for the living conditions improvement of over 100 million people who live in slums all over the world, as the Developments Goals of the Millennium proposed by the United Nations Organization. However, in order to meet the rights to a dignified life of the slums inhabitants, it is necessary to know about them mainly their number and where they are. An important tool related to the beneficial relation among the acquisition time, application cost and possibility of applying again, and transference of knowledge is the use of data from Remote Sensing. These data make it possible to establish the methodologies through the detection of features procedures and classification of the land use for these areas identification. Nevertheless the classical methods of classification cannot obtain, in certain cases, information on the interurban use, in a satisfactory way. In the interim, new paradigms of images classification appear like the Object Based Image Analysis (OBIA) which goes from the defined geographic object to the image segmentation, approaching the object to features of the real world. The application of pertinent rules and context over these objects is possible through specific languages and softwares that allow the transference of human knowledge of photo interpretation and contextual relation to the computing environment. This work aimed at evaluating the use of this classification technique for detection and zoning of slums in Taboão da Serra/SP town using supporting data for the areas characterization, its grades and kinds of precarious conditions. The results show the validity of the technique application.
Martinová, Olga. "Extrakce krajinných prvků z dat dálkového průzkumu". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226365.
Texto completoLübker, Tillmann. "Object-based remote sensing for modelling scenarios of rural livelihoods in the highly structured farmland surrounding Kakamega Forest, western Kenya". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150628.
Texto completoDie vorliegende Arbeit untersucht räumlich-expliziten das stark strukturierte und dicht besiedelte Agrarland um den Kakamega Wald (Westkenia). Dabei kombiniert der interdisziplinäre Ansatz Methoden und Technologien verschiedener Wissenschaftsbereiche: die Fernerkundung mit der objekt-basierten Bildanalyse (OBIA), GIS und die räumlich-explizite Modellierung (Geoinformatik und Geographie) mit sozio- und agro-ökonomische Aspekten (Human- und Sozialwissenschaft) sowie der Kartographie. Zudem steht die Arbeit in Bezug zum Schutz der biologischen Vielfalt (Biologie). Ausgehend von einer Referenzdatenerfassung vor Ort und einer visuellen Bildinterpretation wurden räumlich sehr hochauflösende QuickBird-Satellitenbilddaten, die 466 km² des Agrarlandes abdecken, mit Hilfe von OBIA ausgewertet. In einem integrativen Ansatz wurden dabei statistische Verfahren und Expertenwissen kombiniert, um einen ausgefeilten Regelsatz zur Klassifizierung zu erzeugen. Das Klassifizierungsergebnis unterscheidet 15 Klassen der Landnutzung bzw. -bedeckung; zusammen mit zeitlich extrapolierten und räumlich neu verteilten Bevölkerungsdaten sowie sozio- und agro-ökonomischen Faktoren ermöglichte es, eine räumlich-explizite Typologie des Agrarlandes zu erstellen und Szenarien zum ländlichen Auskommen zu modellieren. Die Agrarlandtypologie unterscheidet zehn Landtypen: 3 Zuckerrohr-dominierte Typen (48% des Gebietes), 3 Tee-dominierte Typen (30%), 2 Übergangstypen (15%), 1 Typ steilen Geländes (2%) und 1 zentralen Typ (5%). Die Szenarien betrachten mögliche zukünftige Entwicklungen der Erträge und Preise der Hauptanbauarten Zuckerrohr, Tee und Mais. Von allen Agrarlandtypen ist der „marginal Zuckerrohr-dominierte Typ“ am besten gerüstet, um zukünftigen Problemen zu begegnen. Bezeichnend für diesen Typ sind – neben einer vergleichsweise geringen Bevölkerungsdichte – ein hoher Anteil an Nahrungsmittelanbau zusammen mit einem gemäßigten Anbau von exportorientierten Agrarprodukten. Als Teil der Forschungsarbeit werden verschiedene neuartige Methoden vorgestellt, u.a. ein neuer konzeptioneller Rahmen für das Kategorisieren von Studien zur Parameteroptimierung, die „area fitness rate“ (AFR) als neue Messgröße für Flächendiskrepanzen, die klassifikations-basierte Nächster-Nachbar Klassifizierung sowie ein Ansatz zum Bestimmen der Güte von OBIA-Klassifizierungen. Schließlich gibt die Arbeit eine Reihe von Empfehlungen und bietet vielversprechende Ausgangspunkte für weiterführende wissenschaftliche Forschungen
Marpu, Prashanth Reddy. "Geographic object-based image analysis". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-5519610.
Texto completoTurcat, Jean-Philippe. "Object-based content representation and analysis for image retrieval". Thesis, Staffordshire University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394142.
Texto completoVolotão, Carlos Frederico de Sá. "Image segmentation using IHS space and object-based analysis". Instituto Nacional de Pesquisas Espaciais (INPE), 2013. http://urlib.net/sid.inpe.br/mtc-m19/2013/01.21.22.42.
Texto completoSegmentation is an important procedure in remote sensing image analysis, which divides an image into parts with uniform properties and changes the smallest unit of an image from pixel to segmento Some factors produce undesired results in the segmentation of remote sensing imagery and one of such factors is due to illumination: the occurrence of shadows. Lighting affects image segmentation because variations on scene lighting modifies the pixel values in all spectral bands. The concentration of intensity on the sensed signal in one channel produces two other channels, hue and saturation, where the effects of glare, shadows and gradients are minimized. The hue is being used to identify objects that are distinguishable by this attribute, and the same principle of detection is being extended to multi-band images, but it is not suitable for all cases. To improve the process it is being presented a way to produce a saturation-weighted synthetic hue channel for multispectral imagery. The central idea behind this object-based approach is the ability to evaluate and change any segment before finishing the segmentation processo A turning function is a representation of polygons by angles and lengths and it may be analyzed and modified as necessary. Every segment identified as foreground undergoes to analysis and the corresponding segment is subject to changes. To obtain the turning function, the segment is first identified as a blob and then converted into a Freeman's chain co de formato The use of indexes is helpful to categorize shapes and some metrics are being presented. The algorithm is implemented in IDL language and it have two modes: unsupervised and supervised. The unsupervised uses a region growing algorithm with random seeds. The supervised consists on the manual indication of a small area of the object. Besides the enhancements on the algorithms and the proposal of a object-based approach for a chosen segmentation technique, this thesis also proposes a feasible way to make segmentation based on phase extracted from multispectral imagery using any segmentation software in addition to creating a synthetic hue band from the combinations of color compositions of the original imagery.
Li, Yi. "Object and concept recognition for content-based image retrieval /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7006.
Texto completoLibros sobre el tema "Object Based Image Analysis (OBIA)"
Blaschke, Thomas, Stefan Lang y Geoffrey J. Hay, eds. Object-Based Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77058-9.
Texto completoThomas, Blaschke, Gärtner Georg, Hay, Geoffrey J. (Geoffrey Joseph), 1966-, Lang, Stefan (Stefan M.), Meng Liqiu, Peterson Michael P y SpringerLink (Online service), eds. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Buscar texto completo1956-, Menz Gunter, ed. Object-based image analysis and treaty verification: New approaches in remote sensing - applied to nuclear facilities in Iran. Dordrecht: Springer, 2008.
Buscar texto completoDhawan, Atam P. A knowledge-based object recognition system for applications in the space station: NASA/KBOR annual report : final report ... Feb. 1, 1987 to Jan. 31, 1988. [Washington, DC: National Aeronautics and Space Administration, 1988.
Buscar texto completoObject-Based Image Analysis and Treaty Verification. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6961-1.
Texto completoBlaschke, Thomas, Stefan Lang y Geoffrey Hay. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications. Springer, 2016.
Buscar texto completoMenz, Gunter y Sven Nussbaum. Object-Based Image Analysis and Treaty Verification: New Approaches in Remote Sensing - Applied to Nuclear Facilities in Iran. Springer, 2010.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. A knowledge-based object recognition system for applications in the space station: NASA/KBOR annual report : final report ... Feb. 1, 1987 to Jan. 31, 1988. [Washington, DC: National Aeronautics and Space Administration, 1988.
Buscar texto completoCapítulos de libros sobre el tema "Object Based Image Analysis (OBIA)"
Prathiba, A. P., Kriti Rastogi, Gaurav V. Jain y V. V. Govind Kumar. "Building Footprint Extraction from Very-High-Resolution Satellite Image Using Object-Based Image Analysis (OBIA) Technique". En Lecture Notes in Civil Engineering, 517–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7067-0_41.
Texto completoNussbaum, Sven. "Object-based Image Analysis". En International Safeguards and Satellite Imagery, 107–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79132-4_8.
Texto completoNelson, Stacy A. C. y Siamak Khorram. "Object Based Image Analysis". En Image Processing and Data Analysis with ERDAS IMAGINE®, 231–47. Boca Raton, FL : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b21969-11.
Texto completoGevers, T. y A. W. M. Smeulders. "Color based object recognition". En Image Analysis and Processing, 319–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63507-6_217.
Texto completoJiang, Fangyuan, Olof Enqvist, Fredrik Kahl y Kalle Åström. "Improved Object Detection and Pose Using Part-Based Models". En Image Analysis, 396–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_38.
Texto completoEhlers, Arne, Florian Baumann y Bodo Rosenhahn. "Exploiting Object Characteristics Using Custom Features for Boosting-Based Classification". En Image Analysis, 420–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_40.
Texto completoBalázs, Péter y Mihály Gara. "An Evolutionary Approach for Object-Based Image Reconstruction Using Learnt Priors". En Image Analysis, 520–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02230-2_53.
Texto completoPontil, Massimiliano y Alessandro Verri. "Direct aspect-based 3-D object recognition". En Image Analysis and Processing, 300–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63508-4_136.
Texto completoPaletta, Lucas, Gerald Fritz y Christin Seifert. "Perception-Action Based Object Detection from Local Descriptor Combination and Reinforcement Learning". En Image Analysis, 639–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_65.
Texto completoOrrite, Carlos y Elena Pollo. "Feature-Based Scaffolding for Object Tracking". En Pattern Recognition and Image Analysis, 411–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58838-4_45.
Texto completoActas de conferencias sobre el tema "Object Based Image Analysis (OBIA)"
Dragozi, E., Ioannis Z. Gitas, Dimitris G. Stavrakoudis y C. Minakou. "Burn severity estimation using GeoEye imagery, object-based image analysis (OBIA), and Composite Burn Index (CBI) measurements". En Third International Conference on Remote Sensing and Geoinformation of the Environment, editado por Diofantos G. Hadjimitsis, Kyriacos Themistocleous, Silas Michaelides y Giorgos Papadavid. SPIE, 2015. http://dx.doi.org/10.1117/12.2193149.
Texto completoFormaggio, Antonio Roberto, Matheus Alves Vieira y Camilo Daleles Renno. "Object Based Image Analysis (OBIA) and Data Mining (DM) in Landsat time series for mapping soybean in intensive agricultural regions". En IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351047.
Texto completoVasylenko, N. y I. Tishaev. "Object based image analysis for cropland mapping". En 17th International Conference on Geoinformatics - Theoretical and Applied Aspects. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801813.
Texto completoMEZARIS, V., I. KOMPATSIARIS y M. G. STRINTZIS. "ONTOLOGIES FOR OBJECT-BASED IMAGE RETRIEVAL". En Proceedings of the 4th European Workshop on Image Analysis for Multimedia Interactive Services. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704337_0018.
Texto completoWang, Lu, Erxue Chen, Zengyuan Li, Wanqiang Yao y Shiming Li. "Object-based analysis for forest inventory". En Eighth International Symposium on Multispectral Image Processing and Pattern Recognition, editado por Jinwen Tian y Jie Ma. SPIE, 2013. http://dx.doi.org/10.1117/12.2031127.
Texto completoXie, Zhi-ping, Geng-sheng Zheng y Gui-ming He. "Moving object extraction based on Markov random field models". En MIPPR 2005 Image Analysis Techniques, editado por Deren Li y Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655091.
Texto completoZuo, Zhengrong, Huafeng Chen y Tianxu Zhang. "Study on object matching method based on Hausdorff distance". En MIPPR 2005 Image Analysis Techniques, editado por Deren Li y Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655283.
Texto completoJovanovic, Dusan, Miro Govedarica, Ivana Dordevic y Vladimir Pajic. "Object based image analysis in forestry change detection". En 2010 IEEE 8th International Symposium on Intelligent Systems and Informatics (SISY 2010). IEEE, 2010. http://dx.doi.org/10.1109/sisy.2010.5647487.
Texto completo"A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS". En International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002848105300533.
Texto completoLizarazo, Ivan y Paul Elsner. "Fuzzy segmentation for geographic object-based image analysis". En SPIE Europe Remote Sensing, editado por Ulrich Michel y Daniel L. Civco. SPIE, 2009. http://dx.doi.org/10.1117/12.830477.
Texto completoInformes sobre el tema "Object Based Image Analysis (OBIA)"
Diesing, M., S. Archer, J. Bremner, T. Dolphin, A. L. Downie y C. Scougal. Drone based very-high resolution imagery analysed with geographic object-based image analysis: the perfect match for mapping intertidal habitats? Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305846.
Texto completoHofmann, Peter, Robert Marschallinger, Michael Unterwurzacher y Fritz Zobl. Designation of marble provenance: State-of-the-art rock fabric characterization in thin sections by object based image analysis. Cogeo@oeaw-giscience, septiembre de 2011. http://dx.doi.org/10.5242/iamg.2011.0284.
Texto completoReshitnyk, L. Y. y E. M. Rubidge. Distinguishing between two canopy-forming kelp species (Macrocystis sp. and Nereocystis sp.) on the central coast of British Columbia using object-based image analysis with WorldView-2 pansharpened imagery. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305918.
Texto completoStelmakh, Marta. HISTORICAL CONTEXT IN THE COLLECTION OF ARTICLES BY TIMOTHY SNYDER «UKRAINIAN HISTORY, RUSSIAN POLITICS, EUROPEAN FUTURE». Ivan Franko National University of Lviv, marzo de 2021. http://dx.doi.org/10.30970/vjo.2021.50.11098.
Texto completo