Literatura académica sobre el tema "Online learning methods"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Online learning methods".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Online learning methods"
Tarasenko, M. "ONLINE LEARNING: INTERACTIVE METHODS". Pedagogy of the formation of a creative person in higher and secondary schools 2, n.º 77 (2021): 49–53. http://dx.doi.org/10.32840/1992-5786.2021.77-2.9.
Texto completoTekin, Cem y Mingyan Liu. "Online Learning Methods for Networking". Foundations and Trends® in Networking 8, n.º 4 (2013): 281–409. http://dx.doi.org/10.1561/1300000050.
Texto completoSalmons, Janet. "Case methods for online learning". eLearn 2003, n.º 6 (junio de 2003): 2. http://dx.doi.org/10.1145/863928.863932.
Texto completoPRASETYA, Prita y Sekar Wulan PRASETYANINGTYAS. "LEARNING STATISTICAL METHODES WITH ONLINE ONLINE COURSE". ICCD 3, n.º 1 (27 de octubre de 2021): 312–15. http://dx.doi.org/10.33068/iccd.vol3.iss1.368.
Texto completoVilkhovchenko, Nadiia P. "ESP distance learning methods At technical universities". Bulletin of Alfred Nobel University Series "Pedagogy and Psychology» 1, n.º 23 (junio de 2022): 116–23. http://dx.doi.org/10.32342/2522-4115-2022-1-23-14.
Texto completoRini, Hesty Prima y Dewi Khrisna Sawitri. "Effectiveness of Online Learning: The Learning Methods and Media". Ilomata International Journal of Social Science 3, n.º 1 (10 de febrero de 2022): 330–39. http://dx.doi.org/10.52728/ijss.v3i1.389.
Texto completoTîrziu, Andreea-Maria y Cătălin I. Vrabie. "NET Generation. Thinking outside the box by using online learning methods". New Trends and Issues Proceedings on Humanities and Social Sciences 2, n.º 7 (27 de enero de 2016): 41–47. http://dx.doi.org/10.18844/gjhss.v2i7.1178.
Texto completoSampe, Maria Zefanya y Syafrudi Syafrudi. "ONLINE MATHEMATICS LEARNING STRATEGY APPROACH: TEACHING METHODS AND LEARNING ASSESSMENT". Jurnal Pendidikan Matematika (JUPITEK) 7, n.º 1 (7 de julio de 2024): 42–55. http://dx.doi.org/10.30598/jupitekvol7iss1pp42-55.
Texto completoLoi, Chek Kim, Jason Miin Hwa Lim, Norazah Mohd Suki y Hock Ann Lee. "Exploring University Students’ Online Learning Readiness: A Mixed Methods Study of Forced Online Learning". Journal of Language and Education 10, n.º 1 (30 de marzo de 2024): 49–67. http://dx.doi.org/10.17323/jle.2024.16016.
Texto completoNF, Jhoanita y Siti Khadijah. "PARENTS’ PERCEPTIONS OF ONLINE LEARNING METHODS: A QUANTITATIVE STUDY". Makna: Jurnal Kajian Komunikasi, Bahasa, dan Budaya 10, n.º 1 (9 de marzo de 2022): 21–30. http://dx.doi.org/10.33558/makna.v10i1.3242.
Texto completoTesis sobre el tema "Online learning methods"
Qin, Lei. "Online machine learning methods for visual tracking". Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0017/document.
Texto completoWe study the challenging problem of tracking an arbitrary object in video sequences with no prior knowledge other than a template annotated in the first frame. To tackle this problem, we build a robust tracking system consisting of the following components. First, for image region representation, we propose some improvements to the region covariance descriptor. Characteristics of a specific object are taken into consideration, before constructing the covariance descriptor. Second, for building the object appearance model, we propose to combine the merits of both generative models and discriminative models by organizing them in a detection cascade. Specifically, generative models are deployed in the early layers for eliminating most easy candidates whereas discriminative models are in the later layers for distinguishing the object from a few similar "distracters". The Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the discriminative object appearance models. Third, for updating the generative models, we propose a weakly-supervised model updating method, which is based on cluster analysis using the mean-shift gradient density estimation procedure. Fourth, a novel online PLS-DA learning algorithm is developed for incrementally updating the discriminative models. The final tracking system that integrates all these building blocks exhibits good robustness for most challenges in visual tracking. Comparing results conducted in challenging video sequences showed that the proposed tracking system performs favorably with respect to a number of state-of-the-art methods
Kovanovic, Vitomir. "Assessing cognitive presence using automated learning analytics methods". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28759.
Texto completoJohnson, Alicia Leinaala. "Exploration of Factors Affecting the Self-Efficacy of Asynchronous Online Learners: a Mixed Methods Study". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77518.
Texto completoPh. D.
Conesa, Gago Agustin. "Methods to combine predictions from ensemble learning in multivariate forecasting". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Texto completoHäglund, Emil. "Estimating Prediction Intervals with Machine Learning and Monte Carlo Methods in Online Advertising". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282826.
Texto completoReklam på nätet är en komplex miljö. Mängden hemsidor, plattformar och format såväl som trenden med programmatiska reklamköp gör det svårt att utvärdera planerad reklam beträffande förväntad kostnad och värde. Den här rapporten använder maskininlärning för att prediktera kostnaden för tusen visningar (CPM), ett mått på annonseringseffektivitet, för ett planerat reklamköp. Random forest och neurala nätverksmodeller jämfördes med avseende på deras förmåga att producera punktskattningar och prediktionsintervall. För att skatta prediktionsintervall för neurala nätverk användes Monte Carlo dropout och skattning av datamängdens brusnivå. För random forest användes en Monte Carlo metod där ett stort antal modeller parametriseras med bootstrapping. Implementerade algoritmer jämfördes med 5x2cv test. Random forest och neural nätverksmodellerna producerade liknande precision för punktskattningar. För att erhålla giltiga prediktionsintervall avseende täckningssannolikhet för random forest krävdes det att parametrar justerades för att öka de enskilda beslutsträdens varians. Detta påverkade precisionen för punktskattningar negativt och prediktionsintervallen för random forest var mindre optimala än de som skattades av neurala nätverksalgoritmen. Denna skillnad i förmåga att skatta prediktionsintervall bekräftades statistiskt av 5x2cv testet.
Wright, Robert Demmon. "Students' Attitudes Towards Rapport-building Traits and Practices in Online Learning Environments". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177265/.
Texto completoLuca, Joseph. "Developing generic skills for tertiary students in an online learning environment". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2002. https://ro.ecu.edu.au/theses/713.
Texto completoCunningham, E. Ann. "Comparison of Student Success by Course Delivery Methods at an Eastern Tennessee Community College". Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2585.
Texto completoJoshi, Apoorva. "Trajectory-based methods to predict user churn in online health communities". Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6152.
Texto completoTunningley, Joan M. "Self-Regulated Learning and Reflective Journaling in an Online Interprofessional Course: A Mixed Methods Study". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511799445626182.
Texto completoLibros sobre el tema "Online learning methods"
plc, Epic Group, ed. Methods: A practical guide to the methods used in online learning. Brighton: Epic Group, 1999.
Buscar texto completoA, Fisher Cheryl y Rietschel Matthew J, eds. Developing online learning environments in nursing education. 3a ed. New York, NY: Springer, 2014.
Buscar texto completo1966-, Lindberg J. Ola y Olofsson Anders D. 1973-, eds. Online learning communities and teacher professional development: Methods for improved education delivery. Hershey, PA: Information Science Reference, 2010.
Buscar texto completo1966-, Lambropoulos Niki y Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Buscar texto completo1966-, Lambropoulos Niki y Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Buscar texto completo1966-, Lambropoulos Niki y Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Buscar texto completoLoke, Jennifer C. F. Critical discourse analysis of interprofessional online learning in health care education. Hauppauge, N.Y: Nova Science Publishers, 2011.
Buscar texto completoConceição, Simone C. O., 1963-, ed. Motivating and retaining online students: Research-based strategies that work. San Francisco, CA: Jossey-Bass, a Wiley brand, 2014.
Buscar texto completoTekin y Mingyan Liu. Online Learning Methods for Networking. Now Publishers, 2015.
Buscar texto completoLOK, Johnny Ch. Advantages Comparision Between Classroom and Online Learning Methods. Independently Published, 2020.
Buscar texto completoCapítulos de libros sobre el tema "Online learning methods"
Bartz-Beielstein, Thomas. "Special Requirements for Online Machine Learning Methods". En Online Machine Learning, 63–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7007-0_6.
Texto completoConceição, Simone C. O. y Susan M. Yelich Biniecki. "Closed and Open Online Discussion Forums". En Methods for Facilitating Adult Learning, 316–32. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-25.
Texto completoMittelman, Rachel J. "Overcoming Resistance to Teaching History Online and Methods of Engagement". En Teaching and Learning History Online, 7–14. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003258414-3.
Texto completoGunawardena, Charlotte Nirmalani, Nick V. Flor y Damien M. Sánchez. "Social Construction of Knowledge (SCK) Platforms, Scraping, and Methods". En Knowledge Co-Construction in Online Learning, 70–77. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-7.
Texto completoRay, Asmita, Vishal Goyal y Samir Kumar Bandyopadhyay. "Student Stress Detection in Online Learning During Outbreak". En Computational Methods in Psychiatry, 259–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_13.
Texto completoGunawardena, Charlotte Nirmalani, Nick V. Flor y Damien M. Sánchez. "Social Learning Analytic Methods (SLAM) for Examining Online Social Dynamics". En Knowledge Co-Construction in Online Learning, 57–69. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-6.
Texto completoPark, Sunyoung, Boreum (Jenny) Ju y Shinhee Jeong. "Adopting Massive Open Online Courses (MOOCs) in Adult Learning Contexts". En Methods for Facilitating Adult Learning, 333–49. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-26.
Texto completoSiska, Jumiati, Meydia Afrina, Sudarwan Danim y Agus Susanta. "The Effectiveness of Demonstrative Learning Methods in Improving Students’ Learning Outcomes". En Online Conference of Education Research International (OCERI 2023), 319–25. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-108-1_31.
Texto completoKatiyar, Kalpana, Hera Fatma y Simran Singh. "Student’s Stress Detection in Online Learning During the Outbreak". En Computational Methods in Psychiatry, 335–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_16.
Texto completoOiwa, Hidekazu, Shin Matsushima y Hiroshi Nakagawa. "Frequency-Aware Truncated Methods for Sparse Online Learning". En Machine Learning and Knowledge Discovery in Databases, 533–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_34.
Texto completoActas de conferencias sobre el tema "Online learning methods"
Atia, Hend Abdelbakey, Magdy Aboul-Ela, Christina Albert Reyad y Nancy Awadallah Awad. "Online Payments Fraud Detection Using Machine Learning Techniques". En 2024 Intelligent Methods, Systems, and Applications (IMSA), 402–9. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652834.
Texto completoZhang, Hao, Liang Huang, Kai Zhao y Ryan McDonald. "Online Learning for Inexact Hypergraph Search". En Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 908–13. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. http://dx.doi.org/10.18653/v1/d13-1093.
Texto completoJung, Hoin y Xiaoqian Wang. "Fairness-Aware Online Positive-Unlabeled Learning". En Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 170–85. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.14.
Texto completoShdefat, Ahmed Younes, Mennatallah Mohamed, Shahd Khaled, Farrah Hany, Hanaa Fathi y Diaa Salama AbdElminaam. "Comparative Analysis of Machine Learning Models in Online Payment Fraud Prediction". En 2024 Intelligent Methods, Systems, and Applications (IMSA), 243–50. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652861.
Texto completoDe Silva, D. I. y K. S. N. Athukorala. "Advancing Online Education: An Interactive Framework for Aligning Teaching Methods with Learning Styles". En 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910891.
Texto completoHillier, Michael, Florian Wellmann, Boyan Brodaric, Eric de Kemp y Ernst Schetselaar. "MACHINE LEARNING METHODS FOR 3D GEOLOGICAL MODEL CONSTRUCTION". En GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355922.
Texto completoSaenal, Selfiana, Syakhruni Syakhruni y Muh Kurniawan Adi Kusuma Wiharja. "Online Learning Methods for Learning Dance at School". En 1st World Conference on Social and Humanities Research (W-SHARE 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220402.056.
Texto completoLu, Lyujian, Hua Wang, Hua Wang, Yaoguo Li, Yaoguo Li, Thomas Monecke, Thomas Monecke, Hoon Seo y Hoon Seo. "PREDICTING 3D GEOSPATIAL DATA USING MACHINE LEARNING-BASED IMPUTATION METHODS". En GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356905.
Texto completoLui, Timothy, Daniel Gregory, Sharon A. Cowling y Well-Shen Lee. "APPLYING MACHINE LEARNING METHODS TO PREDICT GEOLOGY USING SOIL SAMPLE GEOCHEMISTRY". En GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359454.
Texto completoLuo, Hongyin, Zhiyuan Liu, Huanbo Luan y Maosong Sun. "Online Learning of Interpretable Word Embeddings". En Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1196.
Texto completoInformes sobre el tema "Online learning methods"
Stanley, April Elisha y Arienne McCracken. Methods for increasing student learning in an online undergraduate analysis of apparel and production course. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-353.
Texto completoYatsenko, Halyna y Andriy Yatsenko. Використання креативних методів навчання під час викладання дисциплін «Історія української журналістики» і «Креативний текст». Ivan Franko National University of Lviv, marzo de 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11736.
Texto completoTusiime, Hilary Mukwenda y Nahom Eyasu Alemu. Embracing E-Learning in Public Universities in Ethiopia and Uganda. Mary Lou Fulton Teachers College, diciembre de 2023. http://dx.doi.org/10.14507/mcf-eli.j2.
Texto completoClement, Timothy y Brett Vaughan. Evaluation of a mobile learning platform for clinical supervision. University of Melbourne, 2021. http://dx.doi.org/10.46580/124369.
Texto completoAkhmedjanova, Diana y Komiljon Karimov. Covid-19’s Effects on Higher Education in Uzbekistan: The Case of Westminster International University in Tashkent. TOSHKENT SHAHRIDAGI XALQARO VESTMINSTER UNIVERSITETI, noviembre de 2020. https://doi.org/10.70735/azco9450.
Texto completoNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, febrero de 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Texto completoSchmidt-Sane, Megan, Tabitha Hrynick, Erica Nelson y Tom Barker. Mutual Learning for Policy Impact: Insights from CORE. Adapting research methods in the context of Covid-19. Institute of Development Studies (IDS), diciembre de 2021. http://dx.doi.org/10.19088/core.2021.008.
Texto completoFalfushynska, Halina I., Bogdan B. Buyak, Hryhorii V. Tereshchuk, Grygoriy M. Torbin y Mykhailo M. Kasianchuk. Strengthening of e-learning at the leading Ukrainian pedagogical universities in the time of COVID-19 pandemic. [б. в.], junio de 2021. http://dx.doi.org/10.31812/123456789/4442.
Texto completoДирда, Ірина Анатоліївна, Марина Вікторівна Малоіван y Анна Олександрівна Томіліна. Innovative online teaching tools for students who major in english philology: challenges and opportinutuies. Видавнича група «Наукові перспективи», 2023. http://dx.doi.org/10.31812/123456789/7078.
Texto completoDanylchuk, Hanna B. y Serhiy O. Semerikov. Advances in machine learning for the innovation economy: in the shadow of war. Криворізький державний педагогічний університет, agosto de 2023. http://dx.doi.org/10.31812/123456789/7732.
Texto completo