Literatura académica sobre el tema "Optical communications"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optical communications".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Optical communications"
Okoshi, Takanori y Akira Hirose. "Optical communication techniques; A prospect of optical communications." Journal of the Institute of Television Engineers of Japan 42, n.º 5 (1988): 460–67. http://dx.doi.org/10.3169/itej1978.42.460.
Texto completoKuwahara, Hideo y Jim Theodoras. "Optical communications". IEEE Communications Magazine 47, n.º 11 (noviembre de 2009): 42. http://dx.doi.org/10.1109/mcom.2009.5307464.
Texto completoAgrell, Erik, Magnus Karlsson, Francesco Poletti, Shu Namiki, Xi (Vivian) Chen, Leslie A. Rusch, Benjamin Puttnam et al. "Roadmap on optical communications". Journal of Optics 26, n.º 9 (17 de julio de 2024): 093001. http://dx.doi.org/10.1088/2040-8986/ad261f.
Texto completoJukan, Admela y Xiang Liu. "Optical communications networks". IEEE Communications Magazine 54, n.º 8 (agosto de 2016): 108–9. http://dx.doi.org/10.1109/mcom.2016.7537184.
Texto completoSunak, H. R. D. "Optical fiber communications". Proceedings of the IEEE 73, n.º 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.
Texto completoChan, V. W. S. "Optical space communications". IEEE Journal of Selected Topics in Quantum Electronics 6, n.º 6 (noviembre de 2000): 959–75. http://dx.doi.org/10.1109/2944.902144.
Texto completoKIKUCHI, Kazuo. "Coherent Optical Communications". Review of Laser Engineering 13, n.º 6 (1985): 460–66. http://dx.doi.org/10.2184/lsj.13.460.
Texto completoElmirghani, J. M. H. "Optical wireless communications". IEEE Communications Magazine 41, n.º 3 (marzo de 2003): 48. http://dx.doi.org/10.1109/mcom.2003.1186544.
Texto completoKuwahara, Hideo y Jim Theodoras. "Optical Communications: Optical Equinox [Guest Editorial]". IEEE Communications Magazine 45, n.º 8 (agosto de 2007): 24. http://dx.doi.org/10.1109/mcom.2007.4290310.
Texto completoWang, Jun-Bo, Yuan Jiao, Xiaoyu Song y Ming Chen. "Optimal training sequences for indoor wireless optical communications". Journal of Optics 14, n.º 1 (8 de diciembre de 2011): 015401. http://dx.doi.org/10.1088/2040-8978/14/1/015401.
Texto completoTesis sobre el tema "Optical communications"
Boiyo, Duncan Kiboi y Romeo Gamatham. "Optimization of flexible spectrum in optical transport networks". Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14609.
Texto completoLiu, Jingjing. "Optically powered transceiver for optical wireless communications". Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509980.
Texto completoJin, Xian. "Integrated optical devices for free-space optical communications". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17406.
Texto completoDiaz, Ariel Gomez. "Ultrafast indoor optical wireless communications". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:2bd2257f-ae58-40f0-a10f-04e7b5336519.
Texto completoParand, Farivar. "Cellular optical wireless communications systems". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270654.
Texto completoKim, Inwoong. "SYNCHRONIZATION IN ADVANCED OPTICAL COMMUNICATIONS". Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3564.
Texto completoPh.D.
Other
Optics and Photonics
Optics
Walker, N. G. "Multiport detection for optical communications". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383934.
Texto completoKingsbury, Ryan W. "Optical communications for small satellites". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101444.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-124).
Small satellites, particularly CubeSats, have become popular platforms for a wide variety of scientific, commercial and military remote sensing applications. Inexpensive commercial o the shelf (COTS) hardware and relatively low launch costs make these platforms candidates for deployment in large constellations that can offer unprecedented temporal and geospatial sampling of the entire planet. However, productivity for both individual and constellations of CubeSats in low earth orbit (LEO) is limited by the capabilities of the communications subsystem. Generally, these constraints stem from limited available electrical power, low-gain antennas and the general scarcity of available radio spectrum. In this thesis, we assess the ability of free space optical communication (lasercom) to address these limitations, identify key technology developments that enable its application in small satellites, and develop a functional prototype that demonstrates predicted performance. We first establish design goals for a lasercom payload archi- tecture that offers performance improvements (joules-per-bit) over radio-frequency (RF) solutions, yet is compatible with the severe size, weight and power (SWaP) constraints common to CubeSats. The key design goal is direct LEO-to-ground downlink capability with data rates exceeding 10 Mbps, an order of magnitude better than COTS radio solutions available today, within typical CubeSat SWaP constraints on the space terminal, and with similar COTS and low-complexity constraints on the ground terminal. After defining the goals for this architecture, we identify gaps in previous implementations that limit their performance: the lack of compact, power-efficient optical transmitters and the need for pointing capability on small satellites to be as much as a factor of ten better than what is commonly achieved today. One approach is to address these shortcomings using low-cost COTS components that are compatible with CubeSat budgets and development schedules. In design trade studies we identify potential solutions for the transmitter and pointing implementation gaps. Two distinct transmitter architectures, one based on a high-power laser diode and another using an optical amplifier, are considered. Analysis shows that both configurations meet system requirements, however, the optical amplifier offers better scalability to higher data rates. To address platform pointing limitations, we dene a staged control framework incorporating a COTS optical steering mechanism that is used to manage pointing errors from the coarse stage (host satellite body-pointing). A variety of ne steering solutions are considered, and microelectromechanical systems (MEMS) tip-tilt mirrors are selected due to their advantage in size, weight and power. We experimentally validate the designs resulting from the trade studies for these key subsystems. We construct a prototype transmitter using a modified COTS fiber amplifier and a directly-modulated seed laser capable of producing a 200mW average power, pulse position modulated optical output. This prototype is used to confirm power consumption predictions, modulation rate scalability (10 Mbps to 100 Mbps), and peak transmit power (e.g., 24.6W for PPM-128). The transmitter optical output, along with a simple loopback receiver, is used to validate the sensitivity of the avalanche photodiode receiver used for the ground receiver in the flight experiment configuration. The MEMS fine steering mechanisms, which are not rated for space use, are characterized using a purpose-built test apparatus. Characterization experiments of the MEMS devices focused on ensuring repeatable behavior (+/-0:11 mrad, 3-[sigma]) over the expected operating temperature range on the spacecraft (0°C to 40°C). Finally, we provide an assessment of the work that remains to move from the prototype to flight model and into on-orbit operations. Space terminal packaging and integration needs, as well as host spacecraft interface requirements are detailed. We also describe the remaining ground station integration tasks and operational procedures. Having developed a pragmatic COTS-based lasercom architecture for CubeSats, and having addressed the need for a compact laser transmitter and optical ne steering mechanisms with both analysis and experimental validation, this thesis has set the stage for the practical use of lasercom techniques in resource-constrained CubeSats which can yield order-of-magnitude enhancements in communications link eciency relative to existing RF technologies currently in use.
by Ryan W. Kingsbury.
Ph. D.
Joshi, Harita. "Modulation for optical wireless communications". Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55521/.
Texto completoBandele, Jeremiah Oluwatosin. "Extended free-space optical communications". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37961/.
Texto completoLibros sobre el tema "Optical communications"
Sibley, Martin. Optical Communications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0.
Texto completoParadisi, Alberto, Rafael Carvalho Figueiredo, Andrea Chiuchiarelli y Eduardo de Souza Rosa, eds. Optical Communications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97187-2.
Texto completoSibley, M. J. N. Optical Communications. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0.
Texto completoSibley, M. J. N. Optical Communications. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3.
Texto completoGagliardi, Robert M. Optical communications. Malabar, Fla: R.E. Krieger Pub. Co., 1988.
Buscar texto completoSibley, M. J. N. Optical communications. 2a ed. Houndmills, Basingstoke: Macmillan, 1995.
Buscar texto completoKolimbiris, Harold. Fiber optics communications. Upper Saddle River, N.J: Pearson/Prentice Hall, 2004.
Buscar texto completoGhassemlooy, Z., W. Popoola y S. Rajbhandari. Optical Wireless Communications. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315151724.
Texto completoCapítulos de libros sobre el tema "Optical communications"
Renk, Karl F. "Optical Communications". En Basics of Laser Physics, 567–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23565-8_33.
Texto completoRenk, Karl F. "Optical Communications". En Basics of Laser Physics, 623–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50651-7_33.
Texto completoWeik, Martin H. "optical communications". En Computer Science and Communications Dictionary, 1160. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12948.
Texto completoSibley, M. J. N. "Optical Fibre". En Optical Communications, 6–75. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_2.
Texto completoSibley, M. J. N. "Optical Transmitters". En Optical Communications, 76–152. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_3.
Texto completoSibley, M. J. N. "Optical Fibre". En Optical Communications, 7–46. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3_2.
Texto completoSibley, M. J. N. "Optical Transmitters". En Optical Communications, 47–67. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3_3.
Texto completoSibley, Martin. "Optical Fibre". En Optical Communications, 9–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0_2.
Texto completoSibley, Martin. "Optical Transmitters". En Optical Communications, 79–152. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0_3.
Texto completoSibley, M. J. N. "Introduction". En Optical Communications, 1–5. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_1.
Texto completoActas de conferencias sobre el tema "Optical communications"
Wilson, Glenn, Mauricio Uribe, Sigurd Moe, Andreas Ellmauthaler, Kwang Suh, Mikko Jaaskelainen, Jeff Bush y James Dupree. "All-Optical Subsea Sensing and Communications". En Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32645-ms.
Texto completoDeng, Qiuzhuo, Lu Zhang, Hongqi Zhang, Zuomin Yang, Xiaodan Pang, Vjačeslavs Bobrovs, Sergei Popov et al. "Quantum Noise Secured Terahertz Communications". En Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w2a.33.
Texto completoHacker, G. "Homodyne Detection for Optical Space Communications". En Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.thb1.
Texto completoPark, Sung Min y Yuriy Greshishchev. "Optical Communications". En 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 2007. http://dx.doi.org/10.1109/isscc.2007.373577.
Texto completoMasuda, S., H. Rokugawa, K. Yamaguchi, N. Fujimoto y S. Yamakoshi. "Architecture on Optical Processing for Communications". En Photonic Switching. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/phs.1989.sc286.
Texto completoMirasso, Claudio R., Ingo Fischer, Laurent Larger y Dimitris Syvridis. "“Chaotic Optical Communications”". En Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.ftua6.
Texto completoHodgkinson, T. G., D. W. Smith, Richard Wyatt y D. J. Malyon. "Coherent optical communications". En Optical Fiber Communication Conference. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/ofc.1985.mh1.
Texto completoUchida, Teiji. "Coherent Optical Communications". En 20th European Microwave Conference, 1990. IEEE, 1990. http://dx.doi.org/10.1109/euma.1990.336176.
Texto completoKanter, Gregory S. "Secure Optical Communications". En Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cfc3.
Texto completoRichardson, David J. "Optical Communications using Microstructured Optical Fibers". En CLEO: Science and Innovations. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_si.2016.sw4i.1.
Texto completoInformes sobre el tema "Optical communications"
Haus, Joseph W. y Paul F. McManamon. Ladar and Optical Communications Institute (LOCI). Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2013. http://dx.doi.org/10.21236/ada591239.
Texto completoAndrews, L. C., R. L. Phillips, R. Crabbs, T. Leclerc y P. Sauer. Channel Characterization for Free-Space Optical Communications. Fort Belvoir, VA: Defense Technical Information Center, julio de 2012. http://dx.doi.org/10.21236/ada565323.
Texto completoObarski, Gregory E. Wavelength measurement system for optical fiber communications. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1336.
Texto completoGosnell, T., Ping Xie y N. Cockroft. Optical-fiber laser amplifier for ultrahigh-speed communications. Office of Scientific and Technical Information (OSTI), abril de 1996. http://dx.doi.org/10.2172/231323.
Texto completoAdibi, Ali. Advanced Photonic Crystal-Based Integrated Structures for Optical Communications and Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2010. http://dx.doi.org/10.21236/ada563400.
Texto completoJoyce, K. A. Low-Cost Pointing-and-Tracking System for Optical Communications (PATSOC). Fort Belvoir, VA: Defense Technical Information Center, junio de 1988. http://dx.doi.org/10.21236/ada202921.
Texto completoHerczfeld, Peter R. High Speed Optical Transmitter and Receiver Development for Lidar and Communications. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada630365.
Texto completoRabinovich, W. S., G. C. Gilbreath, Peter G. Goetz, R. Mahon, D. S. Kazter, K. Ikossi-Anasatasiou, S. Binari et al. InGaAs Multiple Quantum Well Modulating Retro-Reflector for Free Space Optical Communications. Fort Belvoir, VA: Defense Technical Information Center, enero de 2002. http://dx.doi.org/10.21236/ada461734.
Texto completoBrady, David J., James J. Coleman y Kenneth G. Purchase. Ultra-Fast Optical Signal Encoding and Analysis for Communications and Data Fusion Networks. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2000. http://dx.doi.org/10.21236/ada377846.
Texto completoBoroson, Don M. Optical Communications: A Compendium of Signal Formats, Receiver Architectures, Analysis Mathematics, and Performance Characteristics. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2005. http://dx.doi.org/10.21236/ada439968.
Texto completo