Literatura académica sobre el tema "Particle-In-Cell code"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Particle-In-Cell code".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Particle-In-Cell code"

1

Welch, D. R., T. C. Genoni, R. E. Clark y D. V. Rose. "Adaptive particle management in a particle-in-cell code". Journal of Computational Physics 227, n.º 1 (noviembre de 2007): 143–55. http://dx.doi.org/10.1016/j.jcp.2007.07.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tao, Weifeng. "Skeleton Particle-In-Cell Code on CUDA". Journal of the Visualization Society of Japan 28-1, n.º 1 (2008): 291. http://dx.doi.org/10.3154/jvs.28.291.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Matsumoto, Masami y Shigeo Kawata. "TRIPIC: Triangular-mesh particle-in-cell code". Journal of Computational Physics 87, n.º 2 (abril de 1990): 488–93. http://dx.doi.org/10.1016/0021-9991(90)90262-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mehrling, T., C. Benedetti, C. B. Schroeder y J. Osterhoff. "HiPACE: a quasi-static particle-in-cell code". Plasma Physics and Controlled Fusion 56, n.º 8 (22 de julio de 2014): 084012. http://dx.doi.org/10.1088/0741-3335/56/8/084012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

SEIDEL, D. B., M. L. KIEFER, R. S. COATS, T. D. POINTON, J. P. QUINTENZ y W. A. JOHNSON. "The 3-D, Electromagnetic, Particle-In-Cell Code, QUICKSILVER". International Journal of Modern Physics C 02, n.º 01 (marzo de 1991): 475–82. http://dx.doi.org/10.1142/s012918319100072x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Olshevsky, V., F. Bacchini, S. Poedts y G. Lapenta. "Slurm: Fluid particle-in-cell code for plasma modeling". Computer Physics Communications 235 (febrero de 2019): 16–24. http://dx.doi.org/10.1016/j.cpc.2018.06.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

BRODIN, GERT, AMOL HOLKUNDKAR y MATTIAS MARKLUND. "Particle-in-cell simulations of electron spin effects in plasmas". Journal of Plasma Physics 79, n.º 4 (21 de febrero de 2013): 377–82. http://dx.doi.org/10.1017/s0022377813000093.

Texto completo
Resumen
AbstractWe present a particle-in-cell code accounting for the magnetic dipole force and for the magnetization currents associated with the electron spin. The electrons are divided into spin-up and spin-down populations relative to the magnetic field, where the magnetic dipole force acts in opposite directions for the two species. To validate the code, we study wakefield generation by an electromagnetic pulse propagating parallel to an external magnetic field. The properties of the generated wakefield are shown to be in good agreement with previous theoretical results. Generalizations of the code to account for other quantum effects are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Haugbølle, Troels, Jacob Trier Frederiksen y Åke Nordlund. "photon-plasma: A modern high-order particle-in-cell code". Physics of Plasmas 20, n.º 6 (junio de 2013): 062904. http://dx.doi.org/10.1063/1.4811384.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shalaby, Mohamad, Avery E. Broderick, Philip Chang, Christoph Pfrommer, Astrid Lamberts y Ewald Puchwein. "SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code". Astrophysical Journal 841, n.º 1 (23 de mayo de 2017): 52. http://dx.doi.org/10.3847/1538-4357/aa6d13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

sci, global. "EMPIRE-PIC: A Performance Portable Unstructured Particle-in-Cell Code". Communications in Computational Physics 30, n.º 4 (junio de 2021): 1232–68. http://dx.doi.org/10.4208/cicp.oa-2020-0261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Particle-In-Cell code"

1

Lawrence-Douglas, Alistair. "Ionisation effects for laser-plasma interactions by particle-in-cell code". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57465/.

Texto completo
Resumen
The particle-in-cell code EPOCH was extended to include field and collisional ionisation for use in simulating initially neutral or partially-ionised targets in laser-plasma inter- actions. The means by which particles ionise in the the field of an intense laser was described and physical models were included to determine the instantaneous ionisa- tion rate at particles within the simulation domain for multiphoton, tunnelling, barrier- suppression and electron-impact ionisation. The algorithms used to implement these models were presented and demonstrated to produce the correct ionisation statistics. A scheme allowing for modelling small amounts of ionisation for an arbitrarily low number of superparticles was also presented for comparison and it was shown that for sufficient simulation time the two schemes converge. The three major mechanisms of ionisation in laser-plasma interactions were described as being ionisation-induced defocussing, fast shuttering and ionisation injection. Simulations for these three effects were presented and shown to be in good agreement with theory and experiment. For fast-shuttering, plasma mirrors were simulated using the pulse profile for the Astra Gemini laser at the Central Laser Facility. Rapid switch-on and the theoretical maximum for contrast ratio was observed. For ionisation injection, simulations for laser wakefield acceleration in a helium gas were performed and the accelerated electron population was shown to be greatly increased through use of a 1% nitrogen dopant consistent with the experimental results of McGuffey et al. A study of the laser filamentation instability due to SRS backscatter at the relativistically corrected quarter critical surface (RCQCS) was per- formed in collaboration with C.S. Brady and T.D. Arber at the University of Warwick [1]. It was found that for hydrogen and plastic the instability was unaffected by the in- clusion of ionisation. Further study with argon revealed a attening of the RCQCS and it was demonstrated that for a material with multiple ionisation levels ionising strongly near the self-focussed intensities at the RCQCS, rapid ionisation caused an inversion of the RCQCS that suppressed the filamentation instability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Payne, Joshua Estes. "Implementation and performance evaluation of a GPU particle-in-cell code". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76970.

Texto completo
Resumen
Thesis (S.M. and S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 105-107).
In this thesis, I designed and implemented a particle-in-cell (PIC) code on a graphical processing unit (GPU) using NVIDA's Compute Unified Architecture (CUDA). The massively parallel nature of computing on a GPU nessecitated the development of new methods for various steps of the PIC method. I investigated different algorithms and data structures used in the past for GPU PIC codes, as well as developed some of new ones. The results of this research and development were used to implement an efficient multi-GPU version of the 3D3v PIC code SCEPTIC3D. The performance of the SCEPTIC3DGPU code was evaluated and compared to that of the CPU version on two different systems. For test cases with a moderate number of particles per cell, the GPU version of the code was 71x faster than the system with a newer processor, and 160x faster than the older system. These results indicate that SCEPTIC3DCPU can run problems on a modest workstation that previously would have required a large cluster.
by Joshua Estes Payne.
S.B.
S.M.and S.B.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pierru, Julien. "Development of a Parallel Electrostatic PIC Code for Modeling Electric Propulsion". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/34597.

Texto completo
Resumen
This thesis presents the parallel version of Coliseum, the Air Force Research Laboratory plasma simulation framework. The parallel code was designed to run large simulations on the world fastest supercomputers as well as home mode clusters. Plasma simulations are extremely computationally intensive as they require tracking millions of particles and solving field equations over large domains. This new parallel version will allow Coliseum to run simulations of spacecraft-plasma interactions in domain large enough to reproduce space conditions. The parallel code ran on two of the world fastest supercomputers, the NASA JPL Cosmos supercomputer ranked 37th on the TOP500 list and Virginia Tech's System X, ranked 7th. DRACO, the Virginia Tech PIC module to Coliseum, was modified with parallel algorithms to create a full parallel PIC code. A parallel solver was added to DRACO. It uses a Gauss-Seidel method with SOR acceleration on a Red-Black checkerboard scheme. Timing results were obtained on JPL Cosmos supercomputer to determine the efficiency of the parallel code. Although the communication overhead limits the code's parallel efficiency, the speed up obtained greatly decreases the time required to run the simulations. A speed up of 51 was reached on 128 processors. The parallel code was also used to simulate the plume expansion of an ion thruster array composed of three NSTAR thrusters. Results showed that the multiple beams merge to form a single plume similar to the plume created by a single ion thruster.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chae, Gyoo-Soo. "Numerical Simulation of Ion Waves in Dusty Plasmas". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29165.

Texto completo
Resumen
There has been a great deal of interest in investigating numerous unique types of electrostatic and electromagnetic waves and instabilities in dusty plasmas. Dusty plasmas are characterized by the presence of micrometer or submicrometer size dust grains immersed in a partially or fully ionized plasma. In this study, a two-dimensional numerical model is presented to study waves and instabilities in dusty plasmas. Fundamental differences exist between dusty plasmas and electron-ion plasmas because of dust charging processes. Therefore, a primary goal of this study is to consider the unique effects of dust charging on collective effects in dusty plasmas. The background plasma electrons and ions here are treated as two interpenerating fluids whose densities vary by dust charging. The dust is treated with a Particle-In-Cell PIC model in which the dust charge varies with time according to the standard dust charging model. Fourier spectral methods with a predictor-corrector time advance are used to temporally evolve the background plasma electron and ion equations. The dust charge fluctuation mode and the damping of lower hybrid oscillations due to dust charging, as well as plasma instabilities associated with dust expansion into a magnetized background plasma are investigated using our numerical model. Also, an ion acoustic streaming instability in unmagnetized dusty plasmas due to dust charging is investigated. The numerical simulation results show good agreement with theoretical predictions and provide further insight into dust charging effects on wave modes and instabilities in dusty plasmas.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bramer, Elinor C. "Development of a particle in cell code for the simulation of dual stage ion thrusters". Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/48913/.

Texto completo
Resumen
This thesis focuses on the design, development and testing of a two dimensional particle in cell (PIC) code (PICSIE) written in Matlab. The code is applied to the specific problem of modelling the performance of dual stage ion thrusters. The code simulates one full aperture within dual stage ion thruster systems, focusing on the flow of ions through the aperture. Only the ions have been included in the simulation in order to minimize running time. The results produced by the simulation code are compared with results obtained from the vacuum chamber testing of the DS4G prototype, along with results from other simulation codes and research papers in order to verify the performance of the simulation code. The Dual-Stage 4-Grid (DS4G) and Dual-Stage 3-Grid (DS3G) thrusters are both sim- ulated in order to compare the performance of the two thrusters and assess the benefits and disadvantages of including the fourth grid in a dual stage thruster system. Different grid configurations are simulated in order to find the most efficient configuration of the ion optics and accelerating voltages for each thruster, with the aim being to find the con- figurations that produce the maximum particle momentum, thrust and specific impulse while minimizing the rate of erosion of the ion optics and maximising the efficiency of the thruster. These simulations are applied to the problem of deciding if the advantages provided in using a 4th grid outweigh the disadvantages compared to the 3 grid design. The results show that if erosion due to backstreaming ions is disregarded, including the fourth grid in the thruster design results in no apparent advantages in terms of the perfor- mance parameters studied in this work. The only noticeable difference between the three and four grid cases is a significant increase in the change in ion momentum observed when the fourth grid is not included in the design. The conclusion of the work is that the fourth grid should not be included in the dual stage design unless a very long lifetime is required and it is thought that erosion due to backstreaming will prevent the three grid thruster from fulfilling this criteria. The concept of propagating waves through the plasma within the ion thruster discharge chamber is investigated, with the aim of discovering any benefits and improvements in performance that may arise and forming a conclusion on whether further study on the topic of waves within the discharge chamber may be beneficial. No improvements in per- formance parameters were observed in this work, although further study in the area may show benefits to introducing waves into the plasma.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Spicer, Randy Lee. "Validation of the DRACO Particle-in-Cell Code using Busek 200W Hall Thruster Experimental Data". Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34460.

Texto completo
Resumen
This thesis discusses the recent developments to the electric propulsion plume code DRACO as well as a validation and sensitivity analysis of the code using data from an AFRL experiment using a Busek 200 W Hall Thruster. DRACO is a PIC code that models particles kinematically while using finite differences schemes to solve the electric potential and field.

The DRACO code has been recently modified to improve simulation results, functionality and performance. A particle source has been added that uses the Hall Thruster device code HPHall as input for a source to model Hall Thrusters. The code is now also capable of using a non-uniform mesh that uses any combination of uniform, linear and exponential stretching schemes in any of the three directions. A stretched mesh can be used to refine simulation results in certain areas, such as the exit of a thruster, or improve performance by reducing the number of cells in a mesh. Finally, DRACO now has the capability of using a DSMC collision scheme as well as performing recombination collisions.

A sensitivity analysis of the newly upgraded DRACO code was performed to test the new functionalities of the code as well as validate the code using experimental data gathered at AFRL using a Busek 200 W Hall Thruster. A simulation was created that attempts to numerically recreate the AFRL experiment and the validation is performed by comparing the plasma potential, polytropic temperature, ion number density of the thruster plume as well as Faraday and ExB probe results. The study compares the newly developed HPHall source with older source models and also compares the variations of the HPHall source. The field solver and collision model used are also compared to determine how to achieve the best results using the DRACO code. Finally, both uniform and non-uniform meshes are tested to determine if a non-uniform mesh can be properly implemented to improve simulation results and performance.

The results from the validation and sensitivity study show that the DRACO code can be used to recreate a vacuum chamber simulation using a Hall Thruster. The best results occur when the newly developed HPHall source is used with a MCC collision scheme using a projected background neutral density and CEX collision tracking. A stretched mesh was tested and proved results that are as accurate as a uniform mesh, if not more accurate in locations of high mesh refinement.
Master of Science

Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Martinez, Bertrand. "Effets radiatifs et quantiques dans l'interaction laser-matière ultra-relativiste". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0442/document.

Texto completo
Resumen
L'avènement d'une nouvelle génération de lasers ultra-relativistes (d'éclairement supérieur à 10^22 W/cm2), tels le laser APOLLON sur le plateau de Saclay, donnera lieu à un régime d'interaction laser-matière sans précédent, couplant physique des plasmas relativistes et effets électrodynamiques quantiques. Sources de particules et de rayonnements aux propriétés énergétiques et spatio-temporelles inédites, ces lasers serviront, entre autres applications, à la mise au point de nouveaux concepts d'accélérateurs et de diagnostics radiographiques, au chauffage de plasmas denses, comme à la reproduction de configurations astrophysiques en laboratoire. En prévision des futures expériences, les codes particle-in-cell (PIC), qui constituent les outils de référence pour la simulation de l'interaction laser-plasma, doivent être enrichis des processus radiatifs et quantiques propres à ce nouveau régime d'interaction. C'est le cas du code CALDER développé au CEA/DAM, qui modélise désormais l'émission de photons énergétiques et la conversion de ceux-ci en paires électron-positron ; autant d'effets susceptibles d'affecter le bilan d'énergie de l'interaction laser-cible et, plus précisément, le rendement du laser en particules et rayonnements énergétiques. L'objet de ce stage théorique est d'étudier, à l'aide du code CALDER, l'influence de ces processus dans un certain nombre de scénarios physiques en champ extrême (accélération électronique et ionique dans un plasma surcritique, production de rayonnement, génération de choc non-collisionnel…)
Forthcoming multi-petawatt laser systems, such as the French Apollon and European Extreme Light Infrastructure facilities, are expected to deliver on-target laser intensities exceeding 10^22 W/cm^2. A novel regime of laser-matter interaction will ensue, where ultra-relativistic plasma effects are coupled with copious generation of high-energy photons and electron-positron pairs. This will pave the way for many transdisciplinary applications in fundamental and applied research, including the development of unprecedentedly intense, compact particle and radiation sources, the experimental investigation of relativistic astrophysical scenarios and tests of quantum electrodynamics theory.In recent years, most theoretical studies performed in this research field have focused on the impact of synchrotron photon emission and Breit-Wheeler pair generation, both directly induced by the laser field and believed to be dominant at intensities >10^22 W/cm^2. At the lower intensities (≲10^21 Wcm^(-2)) currently attainable, by contrast, photon and pair production mainly originate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered by atomic Coulomb fields. The conditions for a transition between these two regimes have, as yet, hardly been investigated, particularly by means of integrated kinetic numerical simulations. The purpose of this PhD is precisely to study the aforementioned processes under various physical scenarios involving extreme laser-plasma interactions. This work is carried out using the particle-in-cell CALDER code developed at CEA/DAM which, over the past few years, had been enriched with modules describing the synchrotron and Breit-Wheeler processes.Our first study aimed at extending the simulation capabilities of CALDER to the whole range of photon and positron generation mechanisms arising during relativistic laser-plasma interactions. To this purpose, we have implemented modules for the Coulomb-field-mediated Bremsstrahlung, Bethe-Heitler and Trident processes. Refined Bremsstrahlung and Bethe-Heitler cross sections have been obtained which account for electronic shielding effects in arbitrarily ionized plasmas. Following validation tests of the Monte Carlo numerical method, we have examined the competition between Bremsstrahlung/Bethe-Heitler and Trident pair generations by relativistic electrons propagating through micrometer copper foils. Our self-consistent simulations qualitatively agree with a 0-D theoretical model, yet they show that the deceleration of the fast electrons due to target expansion significantly impacts pair production.We then address the competition between Bremsstrahlung and synchrotron emission from copper foils irradiated at 10^22 Wcm^(-2). We show that the maximum radiation yield (into >10 keV photons) is achieved through synchrotron emission in relativistically transparent targets of a few 10 nm thick. The efficiency of Bremsstrahlung increases with the target thickness, and takes over synchrotron for >2μm thicknesses. The spectral properties of the two radiation processes are analyzed in detail and correlated with the ultrafast target dynamics.Finally, we investigate the potential of nanowire-array targets to enhance the synchrotron yield of a 10^22 Wcm^(-2) femtosecond laser pulse. Several radiation mechanisms are identified depending on the target parameters and as a function of time. A simulation scan allows us to identify the optimal target geometry in terms of nanowire width and interspacing, yielding a ∼10% radiation efficiency. In this configuration, the laser-driven nanowire array rapidly expands to form a quasi-uniform, relativistically transparent plasma. Furthermore, we demonstrate that uniform sub-solid targets can achieve synchrotron yields as high as in nanowire arrays, but that the latter enable a strong emission level to be sustained over a broader range of average plasma density
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Doche, Antoine. "Particle acceleration with beam driven wakefield". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX023/document.

Texto completo
Resumen
Les accélérateurs par onde de sillage plasma produites par faisceaux de particules (PWFA) ou par faisceaux laser (LWFA) appartiennent à un nouveau type d’accélérateurs de particules particulièrement prometteur. Ils permettent d’exploiter des champs accélérateurs jusqu’à cent Gigaélectronvolt par mètre alors que les dispositifs conventionnels se limitent à cent Megaélectronvolt par mètre. Dans le schéma d’accélération par onde de sillage plasma, ou par onde de sillage laser, un faisceau de particules ou une impulsion laser se propage dans un plasma et créé une structure accélératrice dans son sillage : c’est une onde de densité électronique à laquelle sont associés des champs électromagnétiques dans le plasma. L’un des principaux résultats de cette thèse a été la démonstration de l’accélération par onde de sillage plasma d’un paquet distinct de positrons. Dans le schéma utilisé, un plasma de Lithium était créé dans un four, et une onde plasma était excitée par un premier paquet de positrons (le drive ou faisceau excitateur) et l’énergie était extraite par un second faisceau (le trailing ou faisceau témoin). Un champ accélérateur de 1,36 GeV/m a ainsi été obtenu durant l’expérience, pour une charge accélérée typique de 40 pC. Nous montrons également ici la possibilité d’utiliser différents régimes d’accélération qui semblent très prometteurs. Par ailleurs, l’accélération de particule par sillage laser permet quant à elle, en partant d’une impulsion laser femtoseconde de produire un faisceau d’électron quasi-monoénergétique d’énergie typique de l’ordre de 200 MeV. Nous présentons les résultats d’une campagne expérimentale d’association de ce schéma d’accélération par sillage laser avec un schéma d’accélération par sillage plasma. Au cours de cette expérience un faisceau d’électrons créé par laser est refocalisé lors d’une interaction dans un second plasma. Une étude des phénomènes associés à cette plateforme hybride LWFA-PWFA est également présentée. Enfin, le schéma hybride LWFA-PWFA est prometteur pour optimiser l’émission de rayonnement X par les électrons du faisceau de particule crée dans l’étage LWFA de la plateforme. Nous présentons dans un dernier temps la première réalisation expérimentale d’un tel schéma et ses résultats prometteurs
Plasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hammel, Jeffrey Robert. "Development of an unstructured 3-D direct simulation Monte Carlo/particle-in-cell code and the simulation of microthruster flows". Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0510102-153614.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Claypool, Ian Randolph. "A theoretical and numerical study of the use of grid embedded axial magnetic fields to reduce charge exchange ion induced grid erosion in electrostatic ion thrusters". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1172690635.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Particle-In-Cell code"

1

Herten, Andreas, Dirk Brömmel y Dirk Pleiter. "GPU-Accelerated Particle-in-Cell Code on Minsky". En Lecture Notes in Computer Science, 205–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67630-2_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sishtla, Chaitanya Prasad, Steven W. D. Chien, Vyacheslav Olshevsky, Erwin Laure y Stefano Markidis. "Multi-GPU Acceleration of the iPIC3D Implicit Particle-in-Cell Code". En Lecture Notes in Computer Science, 612–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22750-0_58.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mendez, Sandra, Nicolay J. Hammer y Anupam Karmakar. "Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code". En Lecture Notes in Computer Science, 9–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02465-9_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Messmer, Peter. "Par-T: A Parallel Relativistic Fully 3D Electromagnetic Particle-in-Cell Code". En Applied Parallel Computing. New Paradigms for HPC in Industry and Academia, 350–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-70734-4_41.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kropotina, Julia, Andrei Bykov, Alexandre Krassilchtchikov y Ksenia Levenfish. "Maximus: A Hybrid Particle-in-Cell Code for Microscopic Modeling of Collisionless Plasmas". En Communications in Computer and Information Science, 242–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05807-4_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cai, DongSheng, Yaoting Li, Ken-ichi Nishikawa, Chiejie Xiao y Xiaoyan Yan. "Three-Dimensional Electromagnetic Particle-in-Cell Code Using High Performance Fortran on PC Cluster". En Lecture Notes in Computer Science, 515–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47847-7_48.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fonseca, R. A., L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori et al. "OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators". En Lecture Notes in Computer Science, 342–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47789-6_36.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Meyerov, Iosif, Alexander Panov, Sergei Bastrakov, Aleksei Bashinov, Evgeny Efimenko, Elena Panova, Igor Surmin, Valentin Volokitin y Arkady Gonoskov. "Exploiting Parallelism on Shared Memory in the QED Particle-in-Cell Code PICADOR with Greedy Load Balancing". En Parallel Processing and Applied Mathematics, 335–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43229-4_29.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Surmin, Igor, Sergey Bastrakov, Zakhar Matveev, Evgeny Efimenko, Arkady Gonoskov y Iosif Meyerov. "Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi: A First Look at Knights Landing". En Algorithms and Architectures for Parallel Processing, 319–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49956-7_25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Birdsall, C. K. "Particle in Cell Monte Carlo Collision Codes(PIC-MCC); Methods and Applications to Plasma Processing". En Plasma Processing of Semiconductors, 277–89. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5884-8_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Particle-In-Cell code"

1

Smith, Bradley y James Havranek. "A portable parallel particle in cell code". En 34th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Verboncoeur, J. P. "OOPIC: object oriented particle-in-cell code". En International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.533235.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Liu, Dagang, Huihui Wang, Laqun Liu y Mengjun Xie. "Large-scale parallel particle-in-cell code CHIPIC". En 2019 International Vacuum Electronics Conference (IVEC). IEEE, 2019. http://dx.doi.org/10.1109/ivec.2019.8745163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chaber, Bartosz. "Particle-in-Cell code for gas discharge simulations". En 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE). IEEE, 2020. http://dx.doi.org/10.1109/cpee50798.2020.9238682.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Huihui, Wang, Liu Dagang, Liu Laqun y Meng Lin. "The progress of 3-dimensional particle-in-cell code CHIPIC". En 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Brackbill, J. U. y G. Lapenta. "Electrode design with the FLIP-GLOW particle in cell code". En IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science. IEEE, 1996. http://dx.doi.org/10.1109/plasma.1996.550728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wen, Minhua, Min Chen y James Lin. "Optimizing a particle-in-cell code on Intel knights landing". En HPC Asia 2018 WS: Workshops of HPC Asia 2018. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3176364.3176376.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Paul, K., D. A. Dimitrov, R. Busby, D. L. Bruhwiler, D. Smithe, J. R. Cary, J. Kewisch et al. "Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL". En ADVANCED ACCELERATOR CONCEPTS: Proceedings of the Thirteenth Advanced Accelerator Concepts Workshop. AIP, 2009. http://dx.doi.org/10.1063/1.3080928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Seidel, D. B., M. L. Kiefer, R. S. Coats, T. D. Pointon, J. P. Quintenz y W. A. Johnson. "Recent developments in the 3D, electromagnetic, particle-in-cell code, QUICKSILVER". En 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110557.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bui, Thuc, Lawrence Ives, John Verbonceur y Charles Birdsall. "Code Development of a 3D Finite Element Particle-In-Cell Code with Adaptive Meshing". En IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Particle-In-Cell code"

1

Peter, William. An Object-Oriented Particle-in-Cell Code. Fort Belvoir, VA: Defense Technical Information Center, abril de 1996. http://dx.doi.org/10.21236/ada311111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Thuc Bui. BOA, Beam Optics Analyzer A Particle-In-Cell Code. Office of Scientific and Technical Information (OSTI), diciembre de 2007. http://dx.doi.org/10.2172/928978.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

PLIMPTON, STEVEN J., DAVID B. SEIDEL, MICHAEL F. PASIK y REBECCA S. COATS. Load-balancing techniques for a parallel electromagnetic particle-in-cell code. Office of Scientific and Technical Information (OSTI), enero de 2000. http://dx.doi.org/10.2172/751032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Batygin, Y. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines. Office of Scientific and Technical Information (OSTI), octubre de 2004. http://dx.doi.org/10.2172/839612.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Meyers, Michael David, Chengkun Huang, Yong Zeng, Sunghwan Yi y Brian James Albright. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability. Office of Scientific and Technical Information (OSTI), julio de 2014. http://dx.doi.org/10.2172/1143957.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kiefer, M. L., D. B. Seidel, R. S. Coats, J. P. Quintenz, T. D. Pointon y W. A. Johnson. Architecture and computing philosophy of the QUICKSILVER, 3D, electromagnetic, particle-in-cell code. Office of Scientific and Technical Information (OSTI), enero de 1990. http://dx.doi.org/10.2172/7271685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Dolgashev, Valery A. Simulations of Currents in X-Band Accelerator Structures Using 2D and 3D Particle-in-Cell Code. Office of Scientific and Technical Information (OSTI), agosto de 2002. http://dx.doi.org/10.2172/799912.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Burris-Mog, Trevor John. 3D Particle-In-Cell Model of Axis-I: Cathode to Target Single-Code Development for Scorpius. Office of Scientific and Technical Information (OSTI), enero de 2019. http://dx.doi.org/10.2172/1492556.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dipp, T. M. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation. Office of Scientific and Technical Information (OSTI), diciembre de 1993. http://dx.doi.org/10.2172/10129595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

S. Ethier y Z. Lin. Porting the 3D Gyrokinetic Particle-in-cell Code GTC to the CRAY/NEC SX-6 Vector Architecture: Perspectives and Challenges. Office of Scientific and Technical Information (OSTI), septiembre de 2003. http://dx.doi.org/10.2172/815094.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía