Literatura académica sobre el tema "Pearl millet"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Pearl millet".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Pearl millet"
Mehta, Jitendra. "A Comparative Study on the Effect of the Traditional and Industrial Milling on the Nutritional Composition of Sorghum, Pearl Millet and Wheat Flour". Emerging Trends in Nutraceuticals 1, n.º 2 (28 de julio de 2022): 26–35. http://dx.doi.org/10.18782/2583-4606.109.
Texto completoSrivastava, Urvashi, Pinki Saini y Anchal Singh. "Effect of Natural Fermentation on Antioxidant Activity of Pearl Millet (Pennisetum glaucum)". Current Nutrition & Food Science 16, n.º 3 (27 de abril de 2020): 306–13. http://dx.doi.org/10.2174/1573401314666181115103328.
Texto completoMuldoon, D. K. "Growth, mineral composition and grain yield of irrigated and rainfed millets and sorghum". Journal of Agricultural Science 105, n.º 1 (agosto de 1985): 31–38. http://dx.doi.org/10.1017/s0021859600055660.
Texto completoMohiuddin Bhat, Farhan. "Evaluation of Chemical Composition Protein Quality and Amino Acid Scoring WHO/FAO Standards of Functional Cereals Oat Pearl Millet Sorghum and Finger Millet". International Journal of Pharmacognosy & Chinese Medicine 7, n.º 2 (12 de julio de 2023): 1–8. http://dx.doi.org/10.23880/ipcm-16000241.
Texto completoJames, Samaila, Abdullazeez Ozovehe, Adobu Ilemona, Amina Ibrahim-Baba, Caleb Yakubu Maina, Suleiman Amuga James y Suleiman Yusuf Bagirei. "Total phenolic, flavonoid and antioxidant capacities of processed pearl millet and sorghum flours ". Croatian journal of food science and technology 14, n.º 2 (15 de diciembre de 2022): 272–81. http://dx.doi.org/10.17508/cjfst.2022.14.2.12.
Texto completoShukla, Preeti y Suresh Bhise. "Mighty Millets: Bespoke for Multi Nutrients". Current Journal of Applied Science and Technology 42, n.º 32 (30 de septiembre de 2023): 54–62. http://dx.doi.org/10.9734/cjast/2023/v42i324220.
Texto completoG Nishane, Dr Rakhi y Dr Archana S. Dachewar. "Role of Finger Millet, Pearl Millet and Foxtail Millet in Osteoporosis". Sanjeevani Darshan National - Journal of Ayurveda & Yoga 01, n.º 02 (2023): 58–64. http://dx.doi.org/10.55552/sdnjay.2023.1207.
Texto completoSingh, S. D. "Downy Mildew of Pearl Millet". Plant Disease 79, n.º 6 (1995): 545. http://dx.doi.org/10.1094/pd-79-0545.
Texto completoVarsha, S. M. Sree, M. Valliammai y Dr D. Radhapriya. "Optimization and Functionality of Millet Flours in Development of Noodles and Fryum". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de diciembre de 2022): 2217–22. http://dx.doi.org/10.22214/ijraset.2022.48446.
Texto completoKargwal, Raveena, Yadvika, Vijay Kumar Singh y Anil Kumar. "Energy Use Patterns of Pearl Millet (Pennisetumglaucum (L.)) Production in Haryana, India". World 4, n.º 2 (19 de abril de 2023): 241–58. http://dx.doi.org/10.3390/world4020017.
Texto completoTesis sobre el tema "Pearl millet"
Barrion, Stephen Carmelo. "Pearl millet effects of traditional Namibian fermentation-semiwet milling and dry milling processes on nutrient composition /". Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-01282009-132241.
Texto completoHassanat, Fadi. "Evaluation of pearl millet forage". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18698.
Texto completoCette recherche constitue a évalue millet comme une source de fourrage pour les ruminants. Quatre études ont été effectuées en utilisant deux variétés de millet [par exemple midrib brun (BM) et régulier (RM)]. La première étude constituait une évaluation de l'effet de la vitesse de semer les graines de millet sur le rendement, la composition chimique et la degradabilité in vitro des deux variétés de millet. Le rendement de RM était 56% plus haut en comparaison de BM en raison des plus grandes plantes et plus de feuillage par m-2. Le midrib brun de millet contenait 15% plus de CP, et 4, 13 et 31% moins de NDF, ADF et ADL que la variété RM. La digestibilité in vitro de DM était 10% plus haut chez BM en raison de ces différences. La deuxième étude avait pour objectif de déterminer l'effet du niveau de développement à la moisson [par exemple végétal (VS) et niveau d'en-tête (HS)] sur le rendement des deux variétés de millet et la composition de membrane cellulaire dans les feuilles et les tiges. Le rendement de BM était plus bas en comparaison de RM aux deux niveaux de développement. Les concentrations de NDF, ADF et ADL ont été réduits dans les tiges de BM par 8, 16, et 58%, respectivement, en comparaison des tiges de RM. Les concentrations de ADF et ADL dans les feuilles étaient 6 et 49% moins dans BM que RM. Les contenus des différentes fibres ont augmenté avec le niveau de développement, mais l'augmentation été plus prononcée dans les tiges de RM. Le millet brun a eu un effet sur les membranes cellulaires des feuilles et tiges de BM en augmentant la concentration d'arabinose et xylose ainsi que les concentrations d'ester- acides de p-coumaric et d'ester- acides de ferulic. Les contenus d'arabinose, xylose et le glucose dans les membranes cellulaires chez les feuilles et les tiges, et de phenolics dans les tiges était plus haut à VS qu'à HS. Cet effet été plus prononcé pour les tiges de RM que BM. In situ DM et NDF
O'Kennedy, Martha Margaretha. "Genetic enhancement of pearl millet". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49974.
Texto completoENGLISH ABSTRACT: The aim of this study was toe stablish a reliable protocol for the production 0 f transgenic pearl millet as this will open new avenues for augmenting the gene pool of this crop. This was achieved by identifying a highly regenerabie genotype and optimisation of a tissue culture system, and biolistic protocol f or stable integration of selected transgenes. Both a negative, herbicide resistance selectable marker gene, bar, and a positive selectable marker gene, manA, were individually introduced in order to identify and establish a reliable transformation protocol. The optimised transformation protocol was then used to introduce an antifungal gene in the genome of pearl millet to enhance resistance to the biotrophic fungus Sclerospora graminicola. S. graminicola, an obligate oomycetous fungal phytopathogen, is the causal agent of downy mildew in pearl millet plants and a major constraint in the production of pearl millet. A single component of antifungal resistance was introduced into the genome of pearl millet, as preliminary work towards determining its role in the total plant defence system. The approach chosen was to introduce a hydrolytic enzyme, 13-1,3- glucanase, from Trichoderma atroviride (formerly T. harzianum), a soil-borne filamentous fungus, capable of parasitizing several plant pathogenic fungi. It was anticipated that introducing this glucanase gene from T. atroviride which degrades glucan in the fungal cell walls, would significantly contribute to the improvement of resistance against downy mildew. Constructs were prepared containing the gene (gluc78) encoding a 78 kDa beta-1,3- glucanase. The constructs were prepared containing the gluc78 gene driven either by a strong constitutive promoter (ubiquitin promoter, exon and intron) or a wound inducible promoter, the potato proteinase inhibitor ilK gene promoter. The wound inducible promoter includes either an AMV leader' sequence or the rice Act1 intron to obtain higher expression levels in the monocotyledonous plant. The transformation efficiency using the particle inflow gun and the herbicide resistance gene, bar, was improved from 0.02% on a MS based medium, to 0.19 or 0.72% with manA as selectable marker gene on MS or L3 based medium, respectively. However, individual experiments, introducing manA as selectable marker gene, resulted in frequencies of 1.2 and 3%. This translated to one transformation event per plate, which contains on average 31-35 pre-cultured immature zygotic embryos. This is the first report of t he successful introduction and expression of a 13-1,3-glucanase encoding gene from a biocontrol fungus not only under constitutive expression but also under wound inducible expression in a plant. Optimisation of genetic engineering of pearl millet, a cereal crop recalcitrant to transformation, and the introduction of an antifungal transgene, was accomplished in this study. Initial results hint that expression of this transgene enhances resistance to S. graminicola.
AFRIKAANSE OPSOMMING: Die doel van die studie was om 'n betroubare genetiese transformeringsprotokol vir pêrel manna te ontwikkel. Hiervoor moes eerstens 'n regenereerbare genotipe geidentifiseer word. Twedens moes 'n betroubare weefselkultuur en biolistiese transformeringssisteem ontwikkel word. Beide die onkruiddoder bestandheidsgeen, bar, en 'n positiewe selektiewe geen, manA, is vir die doel van die projek onafhanklik in die genoom van pêrel manna in gekloneer. Die optimale sisteem is vervolgens aangewend om 'n geen wat potensieël verbeterde bestandheid teen die biotrofiese swam Sclerospora graminicola wat donsige meeldou by plante veroorsaak, in pêrel manna in te kloneer. 'n Enkele komponent van bestandheid is in die genetiese material van pêrel manna in gekloneer as inleidende werk om die rol van hierdie geen in die totale verdedigingsisteem te bepaal. Die benadering wat gekies was, behels die klonering van 'n hidrolitiese ensiem 13-1,3-glukanase, van Trichoderma atroviride (voorheen T. harzianum), 'n grondgedraagde swam, wat op 'n aantal ander plantpatogene fungus kan parasiteer. Die verwagting is dat klonering van hierdie 13- 1,3-glukanase geen van T. atroviride wat die glukaan verteer in die selwande van swamme, 'n groot verbetering tot die bestandheid teen donsige meeldou sal meebring. Konstrukte is voorberei wat die gluc78 geen bevat wat kodeer vir die 78 kDa beta-1,3-glukanase protein. Die konstrukte wat voorberei is bevat die gluc78 geen geinduseer deur of 'n sterk konstituwe promoter (ubiquitin promoter, exon en intron) of deur 'n wond geinduseerde promoter, die aartappel proteinase inhibeerder ilK geen promoter. Hierdie promoter word gevolg deur of 'n AMV leier volgorde of die rys Act1 intron om verhoogde uitdruk vlakke in monokotiele plante te verseker. As die partikel invloei geweer in kombinasie met die onkruiddoderbestandheidsgeen gebruik word, was die doeltreffendheid van transformasie 0.02% op 'n MS gebasseerde groeimedium. 'n Transformasie doeltreffendheid van onderskeidelik 0.19 en 0.72% is verkry wanneer die manA as selektiewe geen gebruik is op MS of L3 gebasseerde medium. Twee individual eksperimente, waar die manA geen as selektiewe geen gebruik is, het gelei tot 'n transformasie doeltreffendheid van 1.2 of 3%. Dit gee 'n gemiddelde van een transformasie per plaat wat 31 tot 35 voorafgekweekte onvolwasse embrios bevat. Hierdie is d ie eerste verslag van d ie suksesvolle klonering en uitdrukking van 'n 13-1,3-glukanasekoderende geen van 'n swam wat as 'n biologiese beheeragent gebruik word. Hierdie is nie alleenlik onder konstitutiewe uitdrukking nie, maar ook 0 nder wond g einduseerde u itdruk in' n p lant. In hierdie studie is die 0 ptimisering van genetiese verbetering van pêrel manna, 'n graan gewas wat gehard is teen transformasie, deur die klonering van 'n bestandheidsgeen in die genoom van hierdie gewas gedoen. Aanvanklike resultate dui daarop dat die uitdruk van hierdie geen lei tot verbeterde bestandheid teen S. graminicola.
Ricks, Christian B. "The Prolamins of Pearl Millet". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1969.pdf.
Texto completoOsman, Mohamoud, Albert Dobrenz, Haile Tewolde y Robert Voigt. "Drought Tolerance in Pearl Millet". College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200578.
Texto completoTeowolde, Haile, Mohamoud Osman, Robert Voigt y Albert Dobrenz. "Stomate Distribution of Three Pearl Millet Genotypes". College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/200555.
Texto completoRatau, Mmaphuti Abashone. "Chemometrics, physicochemical and sensory characteristics of pearl millet beverage produced with bioburden lactic acid bacteria pure cultures". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2773.
Texto completoThe aim of this study was to evaluate the physical, chemical and sensory characteristics of non-alcoholic pearl millet beverage produced using isolated and purified cultures of bioburden lactic acid bacteria (LAB). Traditional non-alcoholic pearl millet beverage (TNAPMB) was produced through spontaneous fermentation. The slurry was fermented for 36 h at 37°C while monitoring the microbial growth at 3 h interval. LAB were grown on deMan, Rogosa and Sharpe agar and identified using Vitek 2 system. The initial numbers of LAB were 7.04 log cfu/ml and increased to 8.00 log cfu/ml after 21 h. The beverage was dominated by LAB and contaminants and their survival was in succession. LAB from the genera Leuconostoc, Pediococcus, Streptococcus and Enterococcus were the main fermenting species in TNAPMB. Pearl millet extract (PME) was produced by hydrating pearl millet flour (PMF) with water (1:10, PMF:Water). To the mixture sprouted rice flour (10%), ground ginger (10%) and pectin (0.6%) were added. Stable PME was used in the production of plain non-alcoholic pearl millet beverage (PNAPMB). PME was pasteurized at 98°C for 30 min, hot filled and cooled to 25°C. The fluid was inoculated with Leuconostoc mesenteroides, Pediococcus pentosaceus and Enterococcus gallinarum each at 0.05, 0.075 and 0.1%, respectively, using factorial design and fermented for 18 h at 37°C. The pH of the beverage ranged between pH 3.32 and pH 3.90. L. mesenteroides, P. pentosaceus, E. gallinarum, the interaction between L. mesenteroides and P. pentosaceus and the interaction between L. mesentoroides and E. gallinarum had a significant effect (p ˂ 0.05) on the pH of PNAPMB except the interaction between P. pentosaceus and E. gallinarum (p = 0.631). The total titratable acidity (TTA) of the beverage ranged from 0.50 to 0.72%. All cultures had a significant influence (p ˂ 0.05) on the TTA of the beverage with the exception of the interaction between L. mesenteroides and E. gallinarum (p = 0.102). However, Monte Carlo simulation showed that E. gallinarum caused an increase in the pH and a decrease in the TTA of the beverage. During fermentation, the pH of the beverage is desired to decrease while the TTA increases, hence E. gallinarum was removed. The interaction between L. mesenteroides and P. pentosaceus at 0.05% and 0.025%, respectively produced an acceptable PNAPMB with potential for commercialization. Furthermore, moringa supplemented non-alcoholic pearl millet beverage (MSNAPMB) was produced by adding 4% of moringa (Moringa oleifera) leaf powder extract during the production of PNAPMB. The physicochemical, nutritional, microbial (LAB) and sensory characteristics of the PNAPMB, MSNAPMB and TNAPMB were determined. LAB were significantly (p < 0.05) affected by the fermentation period and increased from 3.32 to 7.97 log cfu/ml and 3.58 to 8.38 log cfu/ml in PNAPMB and SNAPMB, respectively. The pH of PNAPMB decreased from pH 5.05 to pH 4.14 while the pH of MSNAPMB decreased from pH 5.05 to pH 3.65 during the 18 h fermentation. The growth of LAB during fermentation had a significant effect (p < 0.05) on the pH of the beverages. The TTA increased from 0.14 to 0.22% and increased from 0.17 to 0.38%, in PNAPMB and MSNAPMB, respectively. The TTA of the beverage was affected significantly (p < 0.05) by the 18 h of fermentation. The protein content was 1.62, 2.17 and 1.50% in PNAPMB, MSNAPMB and TNAPMB, respectively. PNAPMB sample was deemed acceptable in comparison to the MSNAPMB. The total colour difference (ΔE) was 5.91 and 10.60 in PNAPMB and MSNAPMB, respectively in comparison to the TNAPMB. Volatile compounds with beneficial effect such as anti-inflammatory and anti-pathogenic properties were identified in the beverages. Principal component analysis indicated that the variations in characteristics of PNAPMB and MSNAPMB could be explained using total fat, saturated fat, total sugar, ash, moisture, proteins, chroma (C), hue and b*. The results showed that isolated pure cultures could be used as starter cultures in the production of non-alcoholic cereal beverages at a commercial level with predictable quality and safety properties.
Semisi, Semisi Toaolamai. "Interactions of downy mildew fungus Sclerospora graminicola (Sacc.) Schroet and pearl millet Pennisetum americanum (L.) Leeke". Thesis, University of Reading, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253467.
Texto completoCrampton, Bridget Genevieve. "Elucidation of defence response mechanisms in pearl millet". Thesis, Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-10132008-143627.
Texto completoJones, Elizabeth. "Mapping quantitative trait loci for resistance to downy mildew in pearl millet". Thesis, Bangor University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387360.
Texto completoLibros sobre el tema "Pearl millet"
S, Khairwal I., ed. Pearl millet breeding. Enfield, N.H: Science Publishers, 1999.
Buscar texto completoNational Grain Pearl Millet Symposium (1st 1995 Tifton, Ga.). First National Grain Pearl Millet Symposium. Editado por Teare I. D. 1931-, Woodruff John, Wright David L, Coastal Plain Experiment Station, University of Georgia. Cooperative Extension Service. y United States. Agricultural Research Service. [Tifton, Ga.?: Coastal Plain Experiment Station?, 1995.
Buscar texto completoThakur, R. P. Screening techniques for pearl millet diseases. Patancheru: International Crops Research Institute for the Semi-Arid Tropics, 2011.
Buscar texto completoTonapi, Vilas A., Nepolean Thirunavukkarasu, SK Gupta, Prakash I. Gangashetty y OP Yadav, eds. Pearl Millet in the 21st Century. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5890-0.
Texto completoPurohit, S. D. An evaluation study of bajra minikit programme: A case study of Jaipur District in Rajasthan. Vallabh Vidyanagar, Gujarat: Agro-Economic Research Centre, Sardar Patel University, 1989.
Buscar texto completoShetty, S. V. R. Strengthening sorghum and pearl millet research in Mali. Patancheru, A.P: International Crops Research Institute for the Semi-Arid Tropics, 1991.
Buscar texto completoMallet, Michel. Mahangu post-harvest systems: A summary of current knowldege about pearl millet post-harvest issues in Namibia : reserach report. Windhoek: Min. of Agr, Water & Rural Dev., 2001.
Buscar texto completoSADC/ICRISAT Regional Sorghum and Pearl Millet Workshop (1994 Gaborone, Botswana). Drought-tolerant crops for Southern Africa: Proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, 25-29 Jul. 1994, Gaborone, Botswana. Patancheru: International Crops Research Institute for the Semi-Arid Tropics, 1996.
Buscar texto completoBuerkert, Andreas. Effects of crop residues, phosphorus, and spatial soil veriability on yield and nutrient uptake of pearl millet (pennisetum glaucum L.) in Southwest Niger. Stuttgart: Verlag U.E. Grauer, 1995.
Buscar texto completoMallet, Michel. Mahangu post-harvest systems: A summary of current knowledge about pearl millet post-harvest issues in Namibia : research report. Windhoek: Ministry of Agriculture, Water, and Rural Development, Directorate of Planning and Namibian Agronomic Board, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Pearl millet"
Palit, Paramita, Pooja Bhatnagar Mathur y K. K. Sharma. "Pearl Millet". En Alien Gene Transfer in Crop Plants, Volume 2, 75–83. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9572-7_4.
Texto completoHanna, W. W. "Pearl Millet". En Hybrid Cultivar Development, 332–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-07822-8_13.
Texto completoYadav, H. P., S. K. Gupta, B. S. Rajpurohit y Nisha Pareek. "Pearl Millet". En Broadening the Genetic Base of Grain Cereals, 205–24. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3613-9_8.
Texto completoTharanya, Murugesan, Jana Kholová, Kaliamoorthy Sivasakthi, Thiyagarajan Thirunalasundari y Vincent Vadez. "Pearl Millet". En Water-Conservation Traits to Increase Crop Yields in Water-deficit Environments, 73–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56321-3_10.
Texto completoGovindaraj, Mahalingam y Mahesh Pujar. "Pearl Millet". En Compendium of Crop Genome Designing for Nutraceuticals, 1–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3627-2_7-1.
Texto completoHanna, Wayne W., David D. Baltensperger y Annadana Seetharam. "Pearl Millet and Other Millets". En Agronomy Monographs, 537–60. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2016. http://dx.doi.org/10.2134/agronmonogr45.c15.
Texto completoBurton, Glenn W. "Breeding Pearl Millet". En Plant Breeding Reviews, 162–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118060988.ch6.
Texto completoSatyavathi, C. Tara, S. Mukesh Sankar, Sumer Pal Singh, Chandan Kapoor, S. L. Soumya y Tripti Singhal. "Pearl Millet Breeding". En Fundamentals of Field Crop Breeding, 309–66. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9257-4_6.
Texto completoHoseney, R. C., D. J. Andrews y Helen Clark. "Sorghum and Pearl Millet". En Agronomy Monographs, 397–456. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr28.c9.
Texto completoBui-Dang-Ha, D. y J. Pernes. "Pearl Millet (Pennisetum americanum L.)". En Biotechnology in Agriculture and Forestry, 234–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61625-9_14.
Texto completoActas de conferencias sobre el tema "Pearl millet"
Kinanu, Grace Safari, Dasel Wambua Mulwa Kaindi, Prof Wambui Kogi-Makau y Dr Diana Mwendwa Marangu. "Pearl Millet and Honey Bee Brood: A Systematic Review on Nutritional Composition, and Other Characteristics with Combination Advantage to Model A Supplement". En 3rd International Nutrition and Dietetics Scientific Conference. KENYA NUTRITIONISTS AND DIETICIANS INSTITUTE, 2023. http://dx.doi.org/10.57039/jnd-conf-abt-2023-f.s.d.h.l-16.
Texto completoXiaorong Wu, Donghai Wang, Scott R. Bean y Jeffrey P. Wilson. "Ethanol Production from Pearl Millet by Using Saccharomyces cerevisiae". En 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21035.
Texto completoMunjal, Pavas Neha y Uma Kamboj. "Study of physico-chemical properties and spectral data of pearl millet". En THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0164351.
Texto completoSharma, Bunty, Laxman Chugh, Vivek K. Singh, Meenakshi Sood, Meenakshi Dhiman y Ujjawal Sharma. "Effect of storage on fat hydrolysis system in pearl millet flour". En DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0081128.
Texto completoPimentel, Mariana Pinheiro Costa, ALEXANDRE MARTINS ABDAO DOS PASSOS, Sylvain Prigent, Cédric Cassan, Mariana Simões Larraz Ferreira, Pierre Pétriacq y Millena Cristina Barros Santos. "INSIGHTS INTO PEARL MILLET (PENNISETUM GLAUCUM (L.) R. BR.) PHENOTYPIC DIVERSITY BY PREDICTIVE METABOLOMICS". En VI Simpósio de Alimentos e Nutrição. Rio de Janeiro, Rio de Janeiro: Even3, 2024. http://dx.doi.org/10.29327/simposio-alimentos-nutricao.809611.
Texto completo"Extraction of juice from sweet pearl millet and sweet sorghum using two experimental press prototypes". En 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141893603.
Texto completoSankararao, Adduru U. G., P. Rajalakshmi, Sivasakthi Kaliamoorthy y Sunitha Choudhary. "Water Stress Detection in Pearl Millet Canopy with Selected Wavebands using UAV Based Hyperspectral Imaging and Machine Learning". En 2022 IEEE Sensors Applications Symposium (SAS). IEEE, 2022. http://dx.doi.org/10.1109/sas54819.2022.9881337.
Texto completoChandrashekhar, Harsha K., Gunjan Singh, Arya Kaniyassery, Thorat Sachin Ashok, Roopa Nayak, Thokur Sreepathy Murali y Annamalai Muthusamy. "Synthesis and characterization of copper oxide nanoparticles and its influence on pearl millet (Pennisetum gluacum L.) under drought conditions". En 7th International Conference on Theoretical and Applied Nanoscience and Nanotechnology. Avestia Publishing, 2023. http://dx.doi.org/10.11159/tann23.120.
Texto completo"Storage mode and pressing delay effects on juice extraction and sugar content of the biomass of sweet pearl millet and sweet sorghum". En 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141893575.
Texto completoReid, Rachel E. B., Lily Sanborn, Ellen Lalk, Fiona Marshall y Xinyi Liu. "CAN CARBON ISOTOPE VALUES IN THE SEEDS OF A C4 PLANT (PEARL MILLET, PENNISETUM GLAUCUM) SERVE AS A PROXY FOR PAST WATER MANAGEMENT PRACTICES?" En GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-320520.
Texto completoInformes sobre el tema "Pearl millet"
Horton, David R., Victoria Soroker, Peter Landolt y Jocelyn Millar. Optimization and field-testing of synthetic sex attractants for two psyllid pests of pears (Hemiptera: Psyllidae). United States Department of Agriculture, octubre de 2011. http://dx.doi.org/10.32747/2011.7594407.bard.
Texto completo