Literatura académica sobre el tema "Phonon"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phonon".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phonon"
Zhang, Xufeng, Chang-Ling Zou, Liang Jiang y Hong X. Tang. "Cavity magnomechanics". Science Advances 2, n.º 3 (marzo de 2016): e1501286. http://dx.doi.org/10.1126/sciadv.1501286.
Texto completoDovlatova, Alla y Dmitri Yerchuck. "Quantum Field Theory of Dynamics of Spectroscopic Transitions by Strong Dipole-Photon and Dipole-Phonon Coupling". ISRN Optics 2012 (12 de diciembre de 2012): 1–10. http://dx.doi.org/10.5402/2012/390749.
Texto completoP, Munkhbaatar. "Generation and Detection of Squeezed Phonon". Физик сэтгүүл 22, n.º 449 (13 de marzo de 2022): 7–10. http://dx.doi.org/10.22353/physics.v22i449.595.
Texto completoPrasher, Ravi S. "Mie Scattering Theory for Phonon Transport in Particulate Media". Journal of Heat Transfer 126, n.º 5 (1 de octubre de 2004): 793–804. http://dx.doi.org/10.1115/1.1795243.
Texto completoLe Dé, Brieuc, Christian J. Eckhardt, Dante M. Kennes y Michael A. Sentef. "Cavity engineering of Hubbard U via phonon polaritons". Journal of Physics: Materials 5, n.º 2 (1 de abril de 2022): 024006. http://dx.doi.org/10.1088/2515-7639/ac618e.
Texto completoCarmele, Alexander y Stephan Reitzenstein. "Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory". Nanophotonics 8, n.º 5 (23 de abril de 2019): 655–83. http://dx.doi.org/10.1515/nanoph-2018-0222.
Texto completoKuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto y Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders". Advanced Materials Research 11-12 (febrero de 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.
Texto completoRivera, Nicholas, Gilles Rosolen, John D. Joannopoulos, Ido Kaminer y Marin Soljačić. "Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons". Proceedings of the National Academy of Sciences 114, n.º 52 (12 de diciembre de 2017): 13607–12. http://dx.doi.org/10.1073/pnas.1713538114.
Texto completoHasegawa, Takayuki. "Characteristics of Coherent Optical Phonons in a Hexagonal YMnO3 Thin Film". Applied Sciences 9, n.º 4 (18 de febrero de 2019): 704. http://dx.doi.org/10.3390/app9040704.
Texto completoMurphy-Armando, F., É. D. Murray, I. Savić, M. Trigo, D. A. Reis y S. Fahy. "Electronic heat generation in semiconductors: Non-equilibrium excitation and evolution of zone-edge phonons via electron–phonon scattering in photo-excited germanium". Applied Physics Letters 122, n.º 1 (2 de enero de 2023): 012202. http://dx.doi.org/10.1063/5.0131157.
Texto completoTesis sobre el tema "Phonon"
Iskandar, Abdo. "Phonon Heat Transport and Photon-phonon Interaction in Nanostructures". Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0010.
Texto completoIn this dissertation, we investigate phonon heat transport and phonon interaction with optical elementary excitations in nanostructures. In the first chapter, we present an introduction to the physics of phonons and optical elementary excitations in nanostructured materials. The second chapter provides a detailed description of the samples growth and fabrication procedures and the various characterization techniques used. In the third chapter, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. In the fourth chapter, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. We demonstrate that the phonon spectrum of a bulk material can be altered by hybridization between confined phonon modes in nanostructures introduced on the surface of the material and the underlying bulk phonon modes. Shape and size of the nanostructures made on the surface of the substrate have strong effects on the phonon spectrum of the bulk material itself. In the fifth chapter, we demonstrate that at low temperatures (below 4 K) the nanowire specific heat exhibits a clear contribution from an essentially two-dimensional crystal. We also demonstrate that transitions from specular to diffusive elastic transmission and then from diffusive elastic to diffusive inelastic transmission occur at the interface between nanowires and a bulk substrate as temperature increases. Perspectives include the control of bulk material thermal properties via surface nanostructuring
Yatsui, T. y M. Ohtsu. "Dressed Photon-phonon Technology for Ultra Flat Surface". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35264.
Texto completoFung, Tsz Cheong. "Phonon magnonics". Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:a36d494d-73c5-410a-82df-abd0117884e6.
Texto completoKOMIRENKO, SERGIY MYKHAYLOVYCH. "Phonons and phonon-related effects in prospective nanoscale semiconductor devices". NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20001030-145518.
Texto completoThe research was devoted to the theoretical investigation of lattice vibrations in low-dimensional heterostructures and bulk materials with strong polaronic coupling. The purpose of the research has been to develop the phonon theory for technologically-important materials such as nitrides of Ga and Al as well as to locate new phonon-related effects which can be utilized in artificially-created heterostructures. The electron-phonon interaction has been considered quantum mechanically.The main findings can be summarized briefly as follows: 1. Consideration of carrier-induced renormalization of acoustic phonon spectra in quantum wires revealed the possibility for the Peierls phase transition into a state with periodic lattice distortion and charge-density waves of macroscopic period in artificially-prepared structures. The phase diagram for this transition has been determined. An analytical dispersion relation for the coupled electron-phonon excitation has been derived.2. It is found that the drift of two-dimensional electrons in quantum wells can lead to efficient amplification (generation) of sub-THz coherent confined acoustic vibrations due to the Cerenkov effect when the velocity of the drifted electrons exceeds the sound velocity in the given medium. A theory has been developed to describe the confinement of acoustic modes propagating along the high-symmetry directions in cubic quantum wells.3. A theory of confinement of optical phonon modes in wurtzite quantum wells has been developed. A formalism has been derived for calculation of electron scattering rates in optically anisotropic (uniaxial) crystals and quantum wells. 4. From the comparison of the energy losses to the lattice as function of the carrier velocity obtained in frameworks of perturbative model and path-integral Thornber-Feynman approach it is found that perturbation theory can be applied for materials with intermediate polaronic coupling such a GaN and AlN. Moreover, the theoretical possibility of unique low-field runaway transport in these materials has been demonstrated.
Lehmann, Dietmar. "Phonon Spectroscopy and Low-Dimensional Electron Systems". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1138734990743-55381.
Texto completoDie vorliegende Arbeit beschäftigt sich mit der Ausbreitung von akustischen Nichtgleichgewichtsphononen und deren Wechselwirkung mit Halbleiter-Nanostrukturen. Güte und Effizienz moderner Halbleiter-Bauelemente hängen wesentlich vom Verständnis der Wechselwirkung akustischer Phononen mit niederdimensionalen Elektronensystemen ab. Traditionelle Untersuchungsmethoden, wie die Messung der elektrischen Leitfähigkeit oder der Thermospannung, erlauben nur eingeschränkte Aussagen. Sie mitteln über die beteiligten Phononenmoden und eine Trennung der einzelnen Wechselwirkungsmechanismen ist nur näherungsweise möglich ist. Demgegenüber erlaubt die in der Arbeit diskutierte Methode der winkel- und zeitaufgelösten Phononen-Spektroskopie ein direktes Studium des Beitrags einzelner Phononenmoden, d.h. in Abhängigkeit von Wellenzahlvektor und Polarisation der Phononen. Im Mittelpunkt der Arbeit steht die Fragestellung, wie akustische Anisotropie und Ladungsträger-Confinement die Ergebnisse der winkel- und zeitaufgelösten Phononen-Spektroskopie beeinflussen und prägen. Dazu wird ein umfassendes theoretisches Modell zur Simulation von Phononen-Spektroskopie-Experimenten an niederdimensionalen Halbleitersystemen vorgestellt. Dieses erlaubt sowohl ein qualitatives Verständnis der ablaufenden physikalischen Prozesse als auch eine quantitative Analyse der Messergebnisse. Die Vorteile gegenüber anderen Modellen und Rechnungen liegen dabei in dem konsequenten Einbeziehen der akustischen Anisotropie, nicht nur für die Ausbreitung der Phononen, sondern auch für die Matrixelemente der Wechselwirkung, sowie eine saubere Behandlung des Confinements der Elektronen in den niederdimensionalen Systemen. Dabei werden die Grenzen weit verbreiteter Näherungsansätze für die Elektron-Phonon-Matrixelemente und das Elektronen-Confinement deutlich aufgezeigt. Für den quantitativen Vergleich mit realen Experimenten werden aber auch solche Größen, wie die endliche räumliche Ausdehnung von Phononenquelle und Detektor, die Streuung der Phononen an Verunreinigungen oder die Abschirmung der Elektron-Phonon-Kopplung durch die Elektron-Elektron-Wechselwirkung berücksichtigt.Im zweiten Teil der Arbeit wird der theoretische Apparat auf typische experimentelle Fragestellungen angewandt. Im Falle der Phonon-Drag-Experimente an GaAs/AlGaAs Heterostrukturen wird der durch akustische Nichtgleichgewichtsphononen in zwei- und eindimensionalen Elektronensystemen induzierte elektrische Strom (Phonon-Drag-Strom) als Funktion des Ortes der Phononenquelle bestimmt. Das in der Arbeit hergeleitete theoretische Modell kann die experimentellen Resultate für die Winkelabhängigkeit des Drag-Stromes sowohl für Messungen mit und ohne Magnetfeld qualitativ gut beschreiben. Außerdem wird der Einfluss unterschiedlicher Confinementmodelle und unterschiedlicher Wechselwirkungsmechanismen studiert. Dadurch ist es möglich, aus Phonon-Drag-Messungen Rückschlüsse auf die elektronischen und strukturellen Eigenschaften der niederdimensionalen Elektronensysteme zu ziehen (Fermivektor, effektive Masse, Elektron-Phonon-Kopplungskonstanten, Form des Confinementpotentials). Als weiteres Anwendungsbeispiel wird das Problem der Energierelaxation (aufgeheizter)zweidimensionaler Elektronensysteme in GaAs Heterostrukturen und Quantentrögen untersucht. Für Elektronentemperaturen unterhalb 50 K werden die Gesamtemissionsrate als Funktion der Temperatur und die winkelaufgelöste Emissionsrate (als Funktion der Detektorposition) berechnet. Für beide Größen wird erstmals eine gute Übereinstimmung zwischen Theorie und Experiment gefunden. Es zeigt sich, dass akustische Anisotropie und Abschirmungseffekte zu überraschenden neuen Ergebnissen führen können. Ein Beispiel dafür ist der unerwartet große Beitrag der mittels Deformationspotential-Wechselwirkung emittierten transversalen akustischen Phononen, der bei einer Emission der Phononen näherungsweise senkrecht zum zweidimensionalen System beobachtet werden kann
Chamberlain, Martyn Paul. "Electrons, phonons, coupled phonon-plasmons and their interactions in semiconductor heterostructures". Thesis, University of Essex, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254491.
Texto completoMoreira, Leandro Malard. "Raman spectroscopy of graphene:: probing phonons, electrons and electron-phonon interactions". Universidade Federal de Minas Gerais, 2009. http://hdl.handle.net/1843/ESCZ-7ZFGDY.
Texto completoDesde a identificação de uma ou poucas camadas de grafeno em um substrato em 2004, trabalhos intensivos tem sido feitos para se caracterizar esse novo material. Em particular, a Espectroscopia Raman Ressonante tem sido muito importante para elucidar propriedades físicas e químicas em sistemas de grafeno. A Espectroscopia Raman Ressonante também tem se mostrado como uma ferramenta importante para se estudar fônons, elétrons e interações elétron-fônon em grafeno. Nesta tese, ao usarmos diferentes energias de laser de excitação, nós obtivemos propriedades importantes sobre as estruturas eletrônicas e vibracionais para uma e duas camadas de grafeno. Para uma monocamada de grafeno, nós determinamos a dispersão de fônons perto do ponto de Dirac para o modo óptico transversal no plano (iTO) e para o modo acústico longitudinal no plano (iLA). Comparamos nossos resultados experimentais como cálculos teóricos recentes para a dispersao de fônons nas proximidades do ponto K. Para a bicamada de grafeno, nós obtivemos os parâmetros de estrutura eletrônica do modelo de Slonczewski-Weiss-McClure. Nossos resultados mostram que a bicamada de grafeno possue uma forte assimetria elétron-buraco, que por sua vez é mais forte que no grafite. Em experimentos aplicando uma tensão de porta, variamos o nível de Fermi em uma bicamada de grafeno, o que levou uma quebra de simetria, deixando assim ambos os modos de vibração simétricos (S) e anti-simétricos (AS) ativos em Raman. A dependência da energia e do amortecimento desses modos de fônons com a energia de Fermi é explicada através do acoplamento elétron-buraco intra- ou inter- banca. Nossos resultados experimentais deram suporte às previsões teóricas para interações elétron-fónon em uma bicamada de grafeno.
Persson, Jacob. "Magnon-Phonon Coupling". Thesis, Uppsala universitet, Materialteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-377297.
Texto completoLevard, Hugo. "Ingénierie phononique pour les cellules solaires à porteurs chauds". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066013/document.
Texto completoThis thesis deals with fundamental issues related to phonons in hot-carrier solar cells, athird generation photovoltaic technology. This concept aims at extracting photogeneratedcharge carriers before their reach a thermal equilibrium with the lattice, and exhibits a the-oretical efficiency close to thermodynamic limit. One of the main issue is to hinder carriercooling, which occurs through LO-phonon emission. In addition to the idea of screeningthe electron-phonon interaction, one approach consists in designing an absorber in which theLO-phonon has an intrinsic lifetime longer than what it is in conventional materials, en-hancing the rate of its reabsorption by the carriers. The LO-phonon decay and lifetimeis first investigated in semiconductors within density functional perturbation theory. Spe-cific criteria for relevant absorbing materials choosing, from a phonon point of view, arederived. A full study of the LO-phonon lifetime is performed on a singular material, andthe possibility to achieve the sufficient phononic requierements is discussed. Secondly, theabove-mentioned electron-phonon interaction is modelled in superlattices. The couplingstrength is related to the LO-phonon induced macroscopic electric field, which allows tostudy the directional dependence of the phonon emission. The latter reveals to differentlyaffect the dimensionality of the electronic and phononic interacting populations. Thisstudy calls for development of these structure in the framewok of hot-carrier solar cells
Wu, Yunhui. "Experimental Investigation of Size Effects on Surface Phonon Polaritons and Phonon Transport". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC012/document.
Texto completoThermal conduction becomes less efficient as structures scale down into submicron sizes since phonon-boundary scattering becomes predominant and impede phonons more efficiently than Umklapp scattering. Recent studies indicated that the surface phonon polaritons (SPhPs), which are the evanescent electromagnetic waves generated by the hybridation of the optical phonons and the photons and propagating at the surface of a polar dielectric material surface, potentially serve as novel heat carriers to enhance the thermal performance in micro- and nanoscale devices. We study the condition of SPhPs existing in a dielectric submicron film with a broad frequency range. The calculaton of SPhPs thermal conductivity based on Boltzmann transport equation (BTE) demonstrates that the heat flux carried by SPhPs exceeds the one carried by phonons. We also conduct a time-domain-thermal-reflectance (TDTR) measurement of $SiN$ submicron films and demonstrate that the thermal conductivity due to the SPhPs at high temperatures increases by decreasing the film thickness. The results presented in this thesis have potential applications in the field of heat transfer, thermal management, near-field radiation and polaritonics
Libros sobre el tema "Phonon"
Sild, Olev y Kristjan Haller, eds. Zero-Phonon Lines. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4.
Texto completoBron, Walter E., ed. Nonequilibrium Phonon Dynamics. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2501-7.
Texto completoE, Bron Walter y North Atlantic Treaty Organization. Scientific Affairs Division., eds. Nonequilibrium phonon dynamics. New York: Plenum Press, 1985.
Buscar texto completoE, Bron Walter y NATO Scientific Affairs Division, eds. Nonequilibrium phonon dynamics. New York: Plenum published in cooperation with NATO Scientific Affairs Division, 1985.
Buscar texto completoNicholas, R. J. The magnetophonon effect. Oxford, England: Pergamon Press, 1985.
Buscar texto completoSun, Chang Q. Electron and Phonon Spectrometrics. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3176-7.
Texto completoGurevich, V. L. Transport in phonon systems. Amsterdam: North-Holland, 1986.
Buscar texto completoShindé, Subhash L. y Gyaneshwar P. Srivastava, eds. Length-Scale Dependent Phonon Interactions. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8651-0.
Texto completoKress, W. Phonon dispersion curves, one-phonon densities of states and impurity vibrations of metallic systems. Karlsruhe: Fachinformationszentrum Karlsruhe, 1987.
Buscar texto completoMeissner, Michael y Robert O. Pohl, eds. Phonon Scattering in Condensed Matter VII. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9.
Texto completoCapítulos de libros sobre el tema "Phonon"
Böer, Karl W. y Udo W. Pohl. "Photon-Phonon Interaction". En Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06540-3_11-1.
Texto completoBöer, Karl W. y Udo W. Pohl. "Photon–Phonon Interaction". En Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-06540-3_11-2.
Texto completoBöer, Karl W. y Udo W. Pohl. "Photon–Phonon Interaction". En Semiconductor Physics, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-06540-3_11-3.
Texto completoBöer, Karl W. y Udo W. Pohl. "Photon–Phonon Interaction". En Semiconductor Physics, 389–424. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69150-3_11.
Texto completoBöer, Karl W. "Photon-Phonon Interaction". En Survey of Semiconductor Physics, 280–302. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-9744-5_11.
Texto completoBöer, Karl W. y Udo W. Pohl. "Photon–Phonon Interaction". En Semiconductor Physics, 1–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-06540-3_11-4.
Texto completoBöer, Karl W. y Udo W. Pohl. "Photon–Phonon Interaction". En Semiconductor Physics, 429–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18286-0_11.
Texto completoWeik, Martin H. "phonon". En Computer Science and Communications Dictionary, 1265. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13959.
Texto completoSudhir, Vivishek. "Photon-Phonon Coupling: Cavity Optomechanics". En Springer Theses, 83–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69431-3_4.
Texto completoDugaev, Vitalii K. y Vladimir I. Litvinov. "Phonons and Electron–Phonon Interaction". En Modern Semiconductor Physics and Device Applications, 101–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-6.
Texto completoActas de conferencias sobre el tema "Phonon"
Kim, Dasom, Jin Hou, Geon Lee, Ayush Agrawal, Sunghwan Kim, Hao Zhang, Di Bao et al. "Nanoslot-Induced Ultrastrong Phonon-Photon and Phonon-Phonon Coupling in Hybrid Organic-Inorganic Perovskites". En 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676597.
Texto completoBergman, Leah, Mitra Dutta, Ki Wook Kim, Paul G. Klemens, Sergiy M. Komirenko y Michael A. Stroscio. "Phonons, electron-phonon interactions, and phonon-phonon interactions in III-V nitrides". En Symposium on Integrated Optoelectronics, editado por Kong-Thon F. Tsen y Jin-Joo Song. SPIE, 2000. http://dx.doi.org/10.1117/12.381450.
Texto completoAbo, Shilan, Grzegorz Chimczak, Ravindra Chhajlany, Anna Kowalewska-Kudlaszyk y Adam Miranowicz. "Hybrid photon-phonon blockade". En Quantum Technologies 2022, editado por Sara Ducci, Eleni Diamanti, Nicolas Treps y Shannon Whitlock. SPIE, 2022. http://dx.doi.org/10.1117/12.2622111.
Texto completoHopkins, Patrick E., John C. Duda y Pamela M. Norris. "Contributions of Anharmonic Phonon Interactions to Thermal Boundary Conductance". En ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44135.
Texto completoGu, Yunfeng, Zhonghua Ni, Minhua Chen, Kedong Bi y Yunfei Chen. "The Phonon Thermal Conductivity of a Single-Layer Graphene From Complete Phonon Dispersion Relations". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39645.
Texto completoNomura, Masahiro. "Thermal transport by surface phonon polaritons in SiN nanofilms". En JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19p_a602_9.
Texto completoPrasher, Ravi S. "Scattering of Phonons by Nano and Micro Particles". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59347.
Texto completoStiller, Birgit, Moritz Merklein y Benjamin J. Eggleton. "Short-scale photon-phonon interactions". En Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.th3b.1.
Texto completoDemos, S. G., J. M. Buchert y R. R. Alfano. "Nonequilibrium phonon dynamics in forsterite". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wk2.
Texto completoRoberts, N. A. y D. G. Walker. "Phonon Transport in Asymmetric Sawtooth Nanowires". En ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44341.
Texto completoInformes sobre el tema "Phonon"
Kim Bongsang, Patrick Edward Hopkins, Zayd C. Leseman, Drew F. Goettler, Mehmet F. Su, Ihab Fathy El-Kady, Charles M. Reinke y Roy H. ,. III Olsson. Phonon manipulation with phononic crystals. Office of Scientific and Technical Information (OSTI), enero de 2012. http://dx.doi.org/10.2172/1039017.
Texto completoAubry, Sylvie, Thomas Aquinas Friedmann, John Patrick Sullivan, Diane Elaine Peebles, David H. Hurley, Subhash L. Shinde, Edward Stanley Piekos y John Allen Emerson. Phonon engineering for nanostructures. Office of Scientific and Technical Information (OSTI), enero de 2010. http://dx.doi.org/10.2172/984139.
Texto completoBron, W. E. Study of Transient Phonon Dynamics. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1986. http://dx.doi.org/10.21236/ada172691.
Texto completoArnoldus, Henk F. y Thomas F. George. Laser-Linewidth Effects on the Photon-Phonon Conversion Rate at a Gas-Solid Interface,. Fort Belvoir, VA: Defense Technical Information Center, julio de 1986. http://dx.doi.org/10.21236/ada171469.
Texto completoEgami, T., Y. Petrov, R. J. McQueeney, G. Shirane y Y. Endoh. Low temperature phonon anomalies in cuprates. Office of Scientific and Technical Information (OSTI), agosto de 1998. http://dx.doi.org/10.2172/639789.
Texto completoWolfer, W. G. Phonon Drag Dislocations at High Pressures. Office of Scientific and Technical Information (OSTI), octubre de 1999. http://dx.doi.org/10.2172/793838.
Texto completoEvans, Paul G., Kyle M. McElhinny y Gokul Gopalakarishnan. Scattering Tools for Nanostructure Phonon Engineering. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada590229.
Texto completoMohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2008. http://dx.doi.org/10.21236/ada498465.
Texto completoBaowen, Li. Managing Phonon Transport by Core/Shell Nanowires. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2012. http://dx.doi.org/10.21236/ada570448.
Texto completoPlummer, Ward E. Enhanced Electron-Phonon Coupling at Metal Surfaces. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/1073629.
Texto completo