Literatura académica sobre el tema "Plant immunty"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant immunty".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plant immunty"
Hou, Shuguo, Yifei Yang, Daoji Wu y Chao Zhang. "Plant immunity". Plant Signaling & Behavior 6, n.º 6 (junio de 2011): 794–99. http://dx.doi.org/10.4161/psb.6.6.15143.
Texto completoLewis, Jennifer D. "Plant immunity". Seminars in Cell & Developmental Biology 56 (agosto de 2016): 122–23. http://dx.doi.org/10.1016/j.semcdb.2016.07.003.
Texto completoNobori, Tatsuya, André C. Velásquez, Jingni Wu, Brian H. Kvitko, James M. Kremer, Yiming Wang, Sheng Yang He y Kenichi Tsuda. "Transcriptome landscape of a bacterial pathogen under plant immunity". Proceedings of the National Academy of Sciences 115, n.º 13 (12 de marzo de 2018): E3055—E3064. http://dx.doi.org/10.1073/pnas.1800529115.
Texto completoMaksimov, I. V. y R. M. Khairullin. "Plant immunity and plant microbiome". Agrarian science 327, n.º 2 (2019): 40–44. http://dx.doi.org/10.32634/0869-8155-2019-326-2-40-44.
Texto completoPruitt, Rory N., Andrea A. Gust y Thorsten Nürnberger. "Plant immunity unified". Nature Plants 7, n.º 4 (30 de marzo de 2021): 382–83. http://dx.doi.org/10.1038/s41477-021-00903-3.
Texto completoNgou, Bruno Pok Man, Pingtao Ding y Jonathan D. G. Jones. "Channeling plant immunity". Cell 184, n.º 13 (junio de 2021): 3358–60. http://dx.doi.org/10.1016/j.cell.2021.05.035.
Texto completoJamison, Judy. "Boosting plant immunity". Nature Biotechnology 18, n.º 7 (julio de 2000): 703. http://dx.doi.org/10.1038/77240.
Texto completoJung, Su-Jin, Hong Gil Lee y Pil Joon Seo. "Membrane-triggered plant immunity". Plant Signaling & Behavior 9, n.º 9 (16 de julio de 2014): e29729. http://dx.doi.org/10.4161/psb.29729.
Texto completoMengiste, Tesfaye. "Plant Immunity to Necrotrophs". Annual Review of Phytopathology 50, n.º 1 (8 de septiembre de 2012): 267–94. http://dx.doi.org/10.1146/annurev-phyto-081211-172955.
Texto completoAlderton, Gemma. "Networks in plant immunity". Science 360, n.º 6395 (21 de junio de 2018): 1310.12–1312. http://dx.doi.org/10.1126/science.360.6395.1310-l.
Texto completoTesis sobre el tema "Plant immunty"
Cheng, Yu Ti. "Dissecting plant innate immunity using SNC1 : a sensitive immune receptor". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44310.
Texto completoSteele, John. "Molecular recognition in plant immunity". Thesis, University of East Anglia, 2016. https://ueaeprints.uea.ac.uk/58564/.
Texto completoGao, Qing-Ming. "GLYCEROLIPIDS AND THE PLANT CUTICLE CONTRIBUTE TO PLANT IMMUNITY". UKnowledge, 2012. http://uknowledge.uky.edu/plantpath_etds/4.
Texto completoScandolera, Tiffanie. "Interactions plante-virus : impacts d'un fort taux de CO2 atmosphérique et de fortes températures sur la résistance/sensibilité des plantes aux virus dans le contexte du changement climatique". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASB014.
Texto completoUnderstanding and anticipating the impact of climate change on plant-pathogen interactions is a major challenge for the agriculture of tomorrow. Climate predictive models forecast an increase in atmospheric CO₂ concentration from 400 µL.L-1 in 2014 to 1000 µL.L-1 by 2100, as well as a rise in the average annual temperature of 4.6°C by 2100. Plants are directly affected by the increase in CO₂ levels and temperature. The objective of this doctoral project is to study the impact of high CO₂ and elevated temperatures on the level of plant resistance/susceptibility to viruses. The model organism is the common bean (Phaseolus vulgaris L.), an agronomically significant plant, in response to infection by a comovirus, the bean pod mottle virus (BPMV, Comovirus siliquae).Two common bean genotypes were studied in this project: one that is naturally resistant to BPMV (BAT93) and one that is naturally susceptible (Black Valentine).This study is divided into three parts. First, an approach based on the a priori selection of genes involved in different defense pathways against viruses was chosen to study 1/ the impact of high CO₂ and 2/ the impact of heat waves on resistance/susceptibility to BPMV in in both genotypes of P. vulgaris.Second, a more comprehensive approach was performed by RNAseq, in order to study 3/ the combined effect of high CO₂ and heat waves on resistance to BPMV in the naturally resistant genotype of P. vulgaris, BAT93
Prince, David. "Dissecting the role of plant immunity in plant-aphid interactions". Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/42420/.
Texto completoGoritschnig, Sandra. "Protein modification in plant innate immunity". Thesis, University of British Columbia, 2006. http://hdl.handle.net/2429/30887.
Texto completoScience, Faculty of
Botany, Department of
Graduate
Truman, William Matthew Donald. "Signalling pathways underylying plant innate immunity". Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429264.
Texto completoEscouboué, Maxime. "La phosphorylation de l'effecteur PopP2 de Ralstonia solanacearum par des MAPKs immunitaires potentialise ses fonctions de virulence et limite sa reconnaissance chez Arabidopsis". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30041.
Texto completoMicrobial pathogens infect host cells by delivering virulence factors (effectors) that interfere with defense. The Gram-negative Ralstonia solanacearum is the causal agent of bacterial wilt. The well-characterized PopP2 effector form R. solanacearum binds to and acetylate WRKY defensive transcription factors to dampen basal defense responses. In this work, we show that PopP2 phosphorylation on three SP motifs involves a MAPK-docking like domain located in its N-terminus. Although PopP2 phosphorylation does not affect its avirulence activity in Arabidopsis expressing the RPS4/RRS1-R immune receptor complex, its virulence functions strictly depend on this modification. Through different biochemical and confocal microscopy approaches, we show that PopP2 is a substrate of different MAPKs associated with the immune response and in particular, AtMPK3 with which the effector physically interacts in the plant nucleus. Interestingly, activation of MAPK activities during establishment of PTI coincides with the stimulation of the phosphorylation level of PopP2. An RNA-seq analysis indicates that the phosphorylation of PopP2 contributes to the deregulation of many genes related to defense responses. Hypotheses about how PopP2's phosphorylation level would modulate its activities in planta are presented. Overall, this work reveals a virulence strategy used by a bacterial effector that exploits MAPKs associated with immunity to (i) potentiate its virulence functions and (ii) limit its detection in the host
Case, Olivia Hildegard. "An assessment of medicinal hemp plant extracts as natural antibiotic and immune modulation phytotherapies". Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Texto completoCamargo, Ramírez Rosany del Carmen. "Function of microRNAs in plant innate immunity". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405716.
Texto completoThis thesis comprises the study of miRNAs in innate immunity in plants. The work has been developed in rice (Chapter I and Chapter II) and in Arabidopsis (Chapter III), model systems used in studies of functional genomics in monocotyledonous and dicotyledonous species, respectively. Chapter I describes the functional identification and characterization of new rice miRNAs in their interaction with the fungus Magnaporthe oryzae. This fungus is responsible for blast disease, one of the most devastating diseases for rice cultivation worldwide. From the information generated by high-throughput sequencing of small rice RNA libraries, candidate sequences to represent novel rice miRNAs were selected. In this work 5 of these candidates have been studied (miR-64, miR-75, miR-96, miR-98 and miR-203). Obtaining transgenic rice lines has demonstrated that the overexpression of MIR-64 and MIR-75 confers resistance to M. oryzae, therefore these miRNAs function as positive regulators in the rice immune response. Moreover, overexpression of MIR-96, MIR-98 or MIR-203 increase susceptibility to M. oryzae in rice plants (negative regulators of immune response). Analysis of rice mutants affected in the miRNA biogenesis (dcl1, dcl3 and dcl4 mutants) indicate that the mature miRNA production of miR-64, miR-75 or miR-96 depends on DCL3 and/or DCL4, which supports the idea that they are novel rice miRNAs. Furthermore, by gene editing using CRISPR/Cas9, it has been found that a 22 nucleotides deletion in miR-75 precursor results in a susceptibility phenotype under M. oryzae infection (Chapter II), in agreement with a resistance phenotype that was observed in overexpressor plants for this miRNA. In chapter III, the miR858 function in Arabidopsis thaliana innate immunity to infection by pathogenic fungi was studied. This miRNA represses the expression of MYB transcription factors, which act as activators of the expression of genes involved in flavonoids biosynthesis. Plants are resistant to infection by pathogenic fungi (Plectosphaerella cucumerina, Fusarium oxysporum f. sp. Conglutinans and Colletotrichum higginsianum) when the activity of miR858 is blocked by the expression of target mimicry (MIM858 plants), while the overexpression of this miRNA confers greater susceptibility to infection. Additionally, interference with miR858 activity and consequent increase of MYB gene expression in MIM858 plants significantly affects phenylpropanoids metabolism, favoring the synthesis and accumulation of flavonoids, and disfavoring the synthesis of lignin precursors. The antifungal activity that was observed for Kaempferol, naringenin (flavonoids) and p-Coumaric acid, would explain the resistant phenotype by fungi infection which is observed in the MIM858 plants. Altogether, the results obtained in this work demonstrate that miRNAs are an important component in the resistance/susceptibility to infection by pathogenic fungi in Arabidopsis and rice plants. Greater knowledge of miRNA function in plant innate immunity and processes that are regulate by these riboregulators, can be useful in the design of new strategies for the control of diseases in plants.
Libros sobre el tema "Plant immunty"
McDowell, John M., ed. Plant Immunity. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-998-7.
Texto completoSessa, Guido, ed. Molecular Plant Immunity. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.
Texto completoGassmann, Walter, ed. Plant Innate Immunity. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9458-8.
Texto completoSessa, Guido. Molecular plant immunity. Chichester, West Sussex: Wiley-Blackwell, 2013.
Buscar texto completoLoon, L. C. van. Plant innate immunity. Editado por Wiley online library. Amsterdam: Elsevier Academic Press, 2009.
Buscar texto completoVidhyasekaran, P. Plant Hormone Signaling Systems in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9285-1.
Texto completoVidhyasekaran, P. PAMP Signals in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7426-1.
Texto completoVidhyasekaran, P. Switching on Plant Innate Immunity Signaling Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26118-8.
Texto completoVidhyasekaran, P. Plant Innate Immunity Signals and Signaling Systems. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-1940-5.
Texto completoMishra, Manoj Kumar y Nishi Kumari, eds. Plants for Immunity and Conservation Strategies. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2824-8.
Texto completoCapítulos de libros sobre el tema "Plant immunty"
Ellis, Jeffrey G. y David A. Jones. "Plant Disease Resistance Genes". En Innate Immunity, 27–45. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-320-0_2.
Texto completoMonaghan, Jacqueline, Tabea Weihmann y Xin Li. "Plant Innate Immunity". En Plant-Environment Interactions, 119–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89230-4_7.
Texto completoPark, Chang Jin y Pamela C. Ronald. "The Rice Xa21 Immune Receptor Recognizes a Novel Bacterial Quorum Sensing Factor". En Molecular Plant Immunity, 1–21. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch1.
Texto completoÖkmen, Bilal y Pierre J. G. M. de Wit. "Cladosporium fulvum-Tomato Pathosystem: Fungal Infection Strategy and Plant Responses". En Molecular Plant Immunity, 211–24. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch10.
Texto completoWestwood, Jack H. y John P. Carr. "Cucumber Mosaic Virus-ArabidopsisInteraction: Interplay of Virulence Strategies and Plant Responses". En Molecular Plant Immunity, 225–50. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch11.
Texto completoChen, Yan-Jun, Michael F. Lyngkjaer y David B. Collinge. "Future Prospects for Genetically Engineering Disease-Resistant Plants". En Molecular Plant Immunity, 251–75. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch12.
Texto completoMa, Lisong, Harrold A. van den Burg, Ben J. C. Cornelissen y Frank L. W. Takken. "Molecular Basis of Effector Recognition by Plant NB-LRR Proteins". En Molecular Plant Immunity, 23–40. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch2.
Texto completoCoaker, Gitta y Douglas Baker. "Signal Transduction Pathways Activated by R Proteins". En Molecular Plant Immunity, 41–53. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch3.
Texto completoKachroo, Pradeep y Aardra Kachroo. "The Roles of Salicylic Acid and Jasmonic Acid in Plant Immunity". En Molecular Plant Immunity, 55–79. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch4.
Texto completoFeng, Feng y Jian-Min Zhou. "Effectors of Bacterial Pathogens: Modes of Action and Plant Targets". En Molecular Plant Immunity, 81–106. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch5.
Texto completoActas de conferencias sobre el tema "Plant immunty"
Lee, Junho, Tae Hong Kim, Hyungsoo Kim, Woonghwan Ryu, Jae Chun Choi y Joungho Kim. "Design Comparison of I/O Port Ground and Power Plane for Enhanced ESD Immunity". En 1992 International Symposium on Electromagnetic Compatibility, 799–803. IEEE, 1992. https://doi.org/10.1109/isemc.2002.10792207.
Texto completoLee, Junho, Tae Hong Kim, Hyungsoo Kim, Woonghwan Ryu, Jae Chun Choi y Joungho Kim. "Design Comparison of I/O Port Ground and Power Plane for Enhanced ESD Immunity". En 2002_EMC-Europe_Sorrento, 799–803. IEEE, 2002. https://doi.org/10.23919/emc.2002.10879962.
Texto completoHolland, M. L. "Practical Experience with Countering Metal Dusting in a Methane Reforming Unit". En CORROSION 2001, 1–14. NACE International, 2001. https://doi.org/10.5006/c2001-01385.
Texto completoPaul, Larry. "Weld Overlay Materials for Extending the Life of Boiler Tubes in Coal Fired Power Plants". En CORROSION 2008, 1–17. NACE International, 2008. https://doi.org/10.5006/c2008-08442.
Texto completoPrešern, Andreja. "Pathogen-Plant Interactions in Plant Membrane Perforation". En Socratic Lectures 8. University of Lubljana Press, 2023. http://dx.doi.org/10.55295/psl.2023.ii14.
Texto completoPopescu, Sorina. "Redox-sensitive thimet oligopeptidases TOP1 and TOP2 are required for immune signaling and systemic acquired immunity". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1332401.
Texto completoYang, Leiyun. "A glycolytic enzyme negatively regulates immunity through repressing the expression of intracellular immune receptor NLR genes in Arabidopsis thaliana". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1369186.
Texto completoChebotaryov, L. Yu y L. N. Valentovich. "The use of harpins as inducers of plant immunity". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-467.
Texto completoJAWAD, Israa, Adian Abd Alrazak DAKL y Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW". En VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Texto completoKuzmina, L. P., E. S. Tsidilkovskaya y A. G. Khotuleva. "CHANGES IN SCREENING MARKERS OF THE IMMUNE STATUS OF WORKERS AT A LEAD RECYCLING PLANT". En The 17th «OCCUPATION and HEALTH» Russian National Congress with International Participation (OHRNC-2023). FSBSI «IRIOH», 2023. http://dx.doi.org/10.31089/978-5-6042929-1-4-2023-1-269-272.
Texto completoInformes sobre el tema "Plant immunty"
Avni, Adi y Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600030.bard.
Texto completoSessa, Guido y Gregory B. Martin. molecular link from PAMP perception to a MAPK cascade associated with tomato disease resistance. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597918.bard.
Texto completoSessa, Guido y Gregory Martin. role of FLS3 and BSK830 in pattern-triggered immunity in tomato. United States Department of Agriculture, enero de 2016. http://dx.doi.org/10.32747/2016.7604270.bard.
Texto completoAlfano, James, Isaac Barash, Thomas Clemente, Paul E. Staswick, Guido Sessa y Shulamit Manulis. Elucidating the Functions of Type III Effectors from Necrogenic and Tumorigenic Bacterial Pathogens. United States Department of Agriculture, enero de 2010. http://dx.doi.org/10.32747/2010.7592638.bard.
Texto completoChejanovsky, Nor y Bruce A. Webb. Potentiation of pest control by insect immunosuppression. United States Department of Agriculture, julio de 2004. http://dx.doi.org/10.32747/2004.7587236.bard.
Texto completoSessa, Guido y Gregory Martin. MAP kinase cascades activated by SlMAPKKKε and their involvement in tomato resistance to bacterial pathogens. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7699834.bard.
Texto completoChejanovsky, Nor y Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, enero de 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Texto completoFluhr, Robert y Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7697123.bard.
Texto completoSessa, Guido y Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.
Texto completoGafni, Yedidya y Vitaly Citovsky. Inactivation of SGS3 as Molecular Basis for RNA Silencing Suppression by TYLCV V2. United States Department of Agriculture, noviembre de 2013. http://dx.doi.org/10.32747/2013.7593402.bard.
Texto completo