Literatura académica sobre el tema "Population Monte Carlo"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Population Monte Carlo".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Population Monte Carlo"
Cappé, O., A. Guillin, J. M. Marin y C. P. Robert. "Population Monte Carlo". Journal of Computational and Graphical Statistics 13, n.º 4 (diciembre de 2004): 907–29. http://dx.doi.org/10.1198/106186004x12803.
Texto completoIba, Yukito. "Population Monte Carlo algorithms." Transactions of the Japanese Society for Artificial Intelligence 16 (2001): 279–86. http://dx.doi.org/10.1527/tjsai.16.279.
Texto completoEl-Laham, Yousef y Monica F. Bugallo. "Stochastic Gradient Population Monte Carlo". IEEE Signal Processing Letters 27 (2020): 46–50. http://dx.doi.org/10.1109/lsp.2019.2954048.
Texto completoGriffiths, R. C. y S. Tavaré. "Monte Carlo inference methods in population genetics". Mathematical and Computer Modelling 23, n.º 8-9 (abril de 1996): 141–58. http://dx.doi.org/10.1016/0895-7177(96)00046-5.
Texto completoLee, Jeong Eun, Ross McVinish y Kerrie Mengersen. "Population Monte Carlo Algorithm in High Dimensions". Methodology and Computing in Applied Probability 13, n.º 2 (26 de agosto de 2009): 369–89. http://dx.doi.org/10.1007/s11009-009-9154-2.
Texto completoMiller, Caleb, Jem N. Corcoran y Michael D. Schneider. "Rare Events via Cross-Entropy Population Monte Carlo". IEEE Signal Processing Letters 29 (2022): 439–43. http://dx.doi.org/10.1109/lsp.2021.3139572.
Texto completoGONZÁLEZ-PARRA, GILBERTO, ABRAHAM J. ARENAS y F. J. SANTONJA. "STOCHASTIC MODELING WITH MONTE CARLO OF OBESITY POPULATION". Journal of Biological Systems 18, n.º 01 (marzo de 2010): 93–108. http://dx.doi.org/10.1142/s0218339010003159.
Texto completoSmith, Matthew y Themis Matsoukas. "Constant-number Monte Carlo simulation of population balances". Chemical Engineering Science 53, n.º 9 (mayo de 1998): 1777–86. http://dx.doi.org/10.1016/s0009-2509(98)00045-1.
Texto completoLegrady, David, Mate Halasz, Jozsef Kophazi, Balazs Molnar y Gabor Tolnai. "Population-based variance reduction for dynamic Monte Carlo". Annals of Nuclear Energy 149 (diciembre de 2020): 107752. http://dx.doi.org/10.1016/j.anucene.2020.107752.
Texto completoJasra, A., D. A. Stephens y C. C. Holmes. "Population-Based Reversible Jump Markov Chain Monte Carlo". Biometrika 94, n.º 4 (5 de agosto de 2007): 787–807. http://dx.doi.org/10.1093/biomet/asm069.
Texto completoTesis sobre el tema "Population Monte Carlo"
Bakra, Eleni. "Aspects of population Markov chain Monte Carlo and reversible jump Markov chain Monte Carlo". Thesis, University of Glasgow, 2009. http://theses.gla.ac.uk/1247/.
Texto completoAnderson, Eric C. "Monte Carlo methods for inference in population genetic models /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6368.
Texto completoRousset, Mathias. "Méthodes de "Population Monte-Carlo'' en temps continu est physique numérique". Toulouse 3, 2006. http://www.theses.fr/2006TOU30251.
Texto completoIn this dissertation, we focus on stochastic numerical methods of Population Monte-Carlo type, in the continuous time setting. These PMC methods resort to the sequential computation of averages of weighted Markovian paths. The practical implementation rely then on the time evolution of the empirical distribution of a system of N interacting walkers. We prove the long time convergence (towards Schrödinger groundstates) of the variance and bias of this method with the expected 1/N rate. Next, we consider the problem of sequential sampling of a continuous flow of Boltzmann measures. For this purpose, starting with any Markovian dynamics, we associate a second dynamics in reversed time whose law (weighted by a computable Feynman-Kac path average) gives out the original dynamics as well as the target Boltzmann measure. Finally, we generalize the latter problem to the case where the dynamics is caused by evolving rigid constraints on the positions of the process. We compute exactly the associated weights, which resorts to the local curvature of the manifold defined by the constraints
Ding, Jie. "Monte Carlo Pedigree Disequilibrium Test with Missing Data and Population Structure". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218475579.
Texto completoFan, Gailing. "Galaxy radio pulsar population modelling and magellanic clouds radio pulsar survey /". Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25059294.
Texto completoLunn, David Jonathan. "The application of Markov chain Monte Carlo techniques to the study of population pharmacokinetics". Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488145.
Texto completoCamacho, Díaz Judit. "Monte Carlo simulations of the population of single and binary white dwarfs of our galaxy". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145924.
Texto completo范改玲 y Gailing Fan. "Galaxy radio pulsar population modelling and magellanic clouds radio pulsar survey". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243058.
Texto completoLouw, Markus. "A population Monte Carlo approach to estimating parametric bidirectional reflectance distribution functions through Markov random field parameter estimation". Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/5179.
Texto completoLi, Qianqiu. "Bayesian inference on dynamics of individual and population hepatotoxicity via state space models". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124297874.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xiv, 155 p.; also includes graphics (some col.). Includes bibliographical references (p. 147-155). Available online via OhioLINK's ETD Center
Libros sobre el tema "Population Monte Carlo"
Anderson, Gordon. Nonparametric tests for common but unspecified population distributions: A Monte Carlo comparison. Toronto: Dept. of Economics and Institute for Policy Analysis, University of Toronto, 1994.
Buscar texto completoLunn, David Jonathan. The application of Markov chain Monte Carlo techniques to the study of population pharmacokinetics. Manchester: University of Manchester, 1995.
Buscar texto completoLevin, Ines y Betsy Sinclair. Causal Inference with Complex Survey Designs. Editado por Lonna Rae Atkeson y R. Michael Alvarez. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190213299.013.4.
Texto completoCapítulos de libros sobre el tema "Population Monte Carlo"
Liu, Jun S. "Population-Based Monte Carlo Methods". En Springer Series in Statistics, 225–43. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-76371-2_11.
Texto completoKotalczyk, Gregor y Frank Einar Kruis. "Compartmental Population Balances by Means of Monte Carlo Methods". En Dynamic Flowsheet Simulation of Solids Processes, 519–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_15.
Texto completoKrogel, Jaron T. y David M. Ceperley. "Population Control Bias with Applications to Parallel Diffusion Monte Carlo". En ACS Symposium Series, 13–26. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1094.ch002.
Texto completoWood, Matt A. "Monte Carlo Simulations of the White Dwarf Population and Luminosity Function". En White Dwarfs, 105–11. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5542-7_17.
Texto completoGimenez, Olivier, Simon J. Bonner, Ruth King, Richard A. Parker, Stephen P. Brooks, Lara E. Jamieson, Vladimir Grosbois, Byron J. T. Morgan y Len Thomas. "WinBUGS for Population Ecologists: Bayesian Modeling Using Markov Chain Monte Carlo Methods". En Modeling Demographic Processes In Marked Populations, 883–915. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-78151-8_41.
Texto completoNagata, Hiroyasu, Kei-ichi Tainaka, Nariyuki Nakagiri y Jin Yoshimura. "Monte Carlo Simulation in Lattice Ecosystem: Top-Predator Conservation and Population Uncertainty". En Natural Computing, 145–54. Tokyo: Springer Japan, 2009. http://dx.doi.org/10.1007/978-4-431-88981-6_13.
Texto completoSherri, M., I. Boulkaibet, T. Marwala y M. I. Friswell. "Bayesian Finite Element Model Updating Using a Population Markov Chain Monte Carlo Algorithm". En Special Topics in Structural Dynamics & Experimental Techniques, Volume 5, 259–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47709-7_24.
Texto completoZia, R. K. P. y R. J. Astalos. "Statistics of an Age Structured Population with Two Competing Species: Analytic and Monte Carlo Studies". En Springer Proceedings in Physics, 235–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59406-9_30.
Texto completoKlinger, Emmanuel y Jan Hasenauer. "A Scheme for Adaptive Selection of Population Sizes in Approximate Bayesian Computation - Sequential Monte Carlo". En Computational Methods in Systems Biology, 128–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67471-1_8.
Texto completoGraziani, Rebecca. "Stochastic Population Forecasting: A Bayesian Approach Based on Evaluation by Experts". En Developments in Demographic Forecasting, 21–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42472-5_2.
Texto completoActas de conferencias sobre el tema "Population Monte Carlo"
Bugallo, Monica F., Mingyi Hong y Petar M. Djuric. "Marginalized population Monte Carlo". En ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960236.
Texto completoEl-Laham, Yousef, Petar M. Djuric y Monica F. Bugallo. "Enhanced Mixture Population Monte Carlo Via Stochastic Optimization and Markov Chain Monte Carlo Sampling". En ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053410.
Texto completoSweezy, Jeremy, Steve Nolen, Terry Adams y Anthony Zukaitis. "A Particle Population Control Method for Dynamic Monte Carlo". En SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, editado por D. Caruge, C. Calvin, C. M. Diop, F. Malvagi y J. C. Trama. Les Ulis, France: EDP Sciences, 2014. http://dx.doi.org/10.1051/snamc/201403202.
Texto completoElvira, Victor, Luca Martino, David Luengo y Monica F. Bugallo. "Population Monte Carlo schemes with reduced path degeneracy". En 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2017. http://dx.doi.org/10.1109/camsap.2017.8313090.
Texto completoCamacho, Judit, Santiago Torres y Enrique García-Berro. "Monte Carlo simulations of the Galactic binary population". En Supernovae: lights in the darkness. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.060.0008.
Texto completoHua, Fei, Xiao-hong Shen, Zhao Chen, Fu-zhou Yang y Jiang-jian Gu. "Bayesian DOA estimation method using Population Monte Carlo". En 2012 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2012. http://dx.doi.org/10.1109/icspcc.2012.6335671.
Texto completoChen, Xi y Enlu Zhou. "Population model-based optimization with sequential Monte Carlo". En 2013 Winter Simulation Conference - (WSC 2013). IEEE, 2013. http://dx.doi.org/10.1109/wsc.2013.6721490.
Texto completoWang, Xiangrong. "Segmentation Using Population based Markov Chain Monte Carlo". En 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6817967.
Texto completoZhu, Dandan y Kai Jiang. "Population Forecasting Model Based on Monte Carlo Algorithm". En ICCDE 2018: 2018 International Conference on Computing and Data Engineering. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3219788.3219795.
Texto completoChi, Hongmei y Peter Beerli. "Poster: Quasi-Monte Carlo method in population genetics parameter estimation". En 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2011. http://dx.doi.org/10.1109/iccabs.2011.5729891.
Texto completo