Literatura académica sobre el tema "Position Error"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Position Error".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Position Error"
TALLANT, JONATHAN. "An Error in Temporal Error Theory". Journal of the American Philosophical Association 4, n.º 1 (2018): 14–32. http://dx.doi.org/10.1017/apa.2018.5.
Texto completoChen, Dong Ju, Yong Zhang, Fei Hu Zhang y H. M. Wang. "Emulating and Modeling for Position Errors of Ultra-Precision Aspherical Grinding". Applied Mechanics and Materials 10-12 (diciembre de 2007): 291–96. http://dx.doi.org/10.4028/www.scientific.net/amm.10-12.291.
Texto completoZhang, Xiu Heng, Peng Ba y Li Mu. "Position Error Sensitivity Analysis for Polishing Robot". Advanced Materials Research 500 (abril de 2012): 326–30. http://dx.doi.org/10.4028/www.scientific.net/amr.500.326.
Texto completoHe, Ruibo, Xiwen Li, Tielin Shi, Bo Wu, Yingjun Zhao, Fenglin Han, Shunian Yang, Shuhong Huang y Shuzi Yang. "A kinematic calibration method based on the product of exponentials formula for serial robot using position measurements". Robotica 33, n.º 6 (1 de abril de 2014): 1295–313. http://dx.doi.org/10.1017/s026357471400071x.
Texto completoLee, Jae Hong, Hojin Ju y Chan Gook Park. "Error Analysis of PDR System Using Dual Foot-mounted IMU". E3S Web of Conferences 94 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/20199402007.
Texto completoLi, Chaohong, Hao Xian, Wenhan Jiang y Changhui Rao. "Wavefront error caused by centroid position random error". Journal of Modern Optics 55, n.º 1 (10 de enero de 2008): 127–33. http://dx.doi.org/10.1080/09500340701321990.
Texto completoJiang, Yu, Na Li, Xuemei Gong, Guorui Jia y Huijie Zhao. "Improved Position Error Model for Airborne Hyperspectral Imaging Systems". International Journal of Pattern Recognition and Artificial Intelligence 33, n.º 05 (8 de abril de 2019): 1954017. http://dx.doi.org/10.1142/s021800141954017x.
Texto completoPilbeam, Chloë y Victoria Hood-Moore. "Test–retest reliability of wrist joint position sense in healthy adults in a clinical setting". Hand Therapy 23, n.º 3 (18 de abril de 2018): 100–109. http://dx.doi.org/10.1177/1758998318770227.
Texto completoKu, SungKwan, Hojong Baik y Taehyoung Kim. "Analysis of surveillance position error for airfield detection". Aircraft Engineering and Aerospace Technology 90, n.º 6 (3 de septiembre de 2018): 962–66. http://dx.doi.org/10.1108/aeat-09-2017-0207.
Texto completoKim, Wonhee, Donghoon Shin y Youngwoo Lee. "Nonlinear Position Control Using Only Position Feedback under Position Errors and Yaw Constraints for Air Bearing Planar Motors". Mathematics 8, n.º 8 (13 de agosto de 2020): 1354. http://dx.doi.org/10.3390/math8081354.
Texto completoTesis sobre el tema "Position Error"
Bergeron, André 1967. "Multiple-step gaze shifts reveal gaze position error in brainstem". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82831.
Texto completoTemple, Thomas J. (Thomas John). "Autonomous error bounding of position estimates from GPS and Galileo". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37884.
Texto completoIncludes bibliographical references (p. 79-81).
In safety-of-life applications of satellite-based navigation, such as the guided approach and landing of an aircraft, the most important question is whether the navigation error is tolerable. Although differentially corrected GPS is accurate enough for the task most of the time, anomalous measurement errors can create situations where the navigation error is intolerably large. Detection of such situations is referred to as integrity monitoring. Due to the non:stationary nature of the error sources, it is impossible to predetermine an adequate error-bound with the required confidence. Since the errors at the airplane can be different from the errors at reference stations, integrity can't be assured by ground monitoring. It is therefore necessary for the receiver on the airplane to autonomously assess the integrity of the position estimate in real-time. In the presence of multiple errors it is possible for a set of measurements to remain self-consistent despite containing errors. This is the primary reason why GPS has been unable to provide adequate integrity for aircraft approach. When the Galileo system become operational, there will be many more independent measurements. The more measurements that are available, the more unlikely it becomes that the errors happen to be self-consistent by chance. This thesis will quantify this relationship.
(CONT.) In particular, we determine the maximum level of navigation error at a given probability as a function of the redundancy and consistency of the measurements. Rather than approach this problem with statistical tests in mind, we approach this as a machine learning problem in which we empirically determine an optimal mapping from the measurements to an error bound. In so doing we will examine a broader class of tests than has been considered before. With a sufficiently large and demanding training data, this approach provides error-bounding functions that meet even the strictest integrity requirements of precision approaches. We determine the optimal error-bounding function and show that in a GPS + Galileo constellation, it can meet the requirements of Category I, II and III precision approach-a feat that has proven difficult for GPS alone. This function is shown to underestimate the level of error at a rate of less than 10-7 per snapshot regardless of the pseudorange error distribution. This corresponds to a rate of missed detection of less than 10-9 for all approach categorizations. At the same time, in a 54 satellite constellation, the level of availability for Category I precision approaches availability exceeds 99.999%. For Category II and III precision approaches, it can provide availability exceeding 99.9% with either a 60 satellite constellation, or with a modest improvement over existing LAAS corrections.
by Thomas J. Temple.
S.M.
Kuratomi, Alejandro. "GNSS Position Error Estimated by Machine Learning Techniques with Environmental Information Input". Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262692.
Texto completoInom Intelligenta transportsystem (ITS), specifikt för självkörande fordon, så är en exakt fordonspositionering en nödvändighet för ökad trafiksäkerhet. Positionsnoggrannheten beror på estimering av både positionen samt positionsfelet. Olika tekniker och tillämpningar som siktar på att förbättra positionsfeluppskattningen behövs, vilket det nu forskas kring. Denna uppsats undersöker olika maskininlärningsalgoritmer inriktade på estimering av positionsfel. Algoritmerna utvärderar relevant information från en GNSS-mottagare, samt information från en kamera om den kringliggande miljön. En GNSS-mottagare och kamera monterades på en radiostyrd mobil testplattform för insamling av data. Examensarbetet består av två delar. Första delen innehåller träning och testning av valda maskininlärningsalgoritmer med GNSS-data tillhandahållen av Waysure från tester gjorda under 2016. Denna data inkluderar ingen information från den omkringliggande miljön runt GNSS-mottagaren. Andra delen består av träning och testning av valda maskininlärningsalgoritmer på GNSS-data som kommer från nya tester gjorda under maj 2019, vilka inkluderar miljöinformation runt GNSS-mottagaren. Resultaten från båda delar analyseras. De viktigaste egenskaper som erhålls från en trädbaserad modell, algoritmens beslutsträd, presenteras. Slutsatsen från denna rapport är att det inte går att statistiskt säkerställa att inkludering av information från den omkringliggande miljön från en kamera förbättrar noggrannheten vid estimering av positionsfelet med de valda maskininlärningsmodellerna.
Chretien, Ludovic. "POSITION SENSORLESS CONTROL OF NON-SALIENT PERMANENT MAGNET SYNCHRONOUS MACHINE". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1145286531.
Texto completoRonquist, Anton y Birger Winroth. "Estimation and Compensation of Load-Dependent Position Error in a Hybrid Stepper Motor". Thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129554.
Texto completoKilic, Ergin. "Novel Position Measurement And Estimation Methods For Cnc Machine Systems". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608762/index.pdf.
Texto completoEliasson, Mattias. "A Kalman filter approach to reduce position error for pedestrian applications in areas of bad GPS reception". Thesis, Umeå universitet, Institutionen för datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92829.
Texto completoSama, Michael P. "PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN DYNAMIC AGRICULTURAL APPLICATIONS". UKnowledge, 2013. http://uknowledge.uky.edu/bae_etds/14.
Texto completoSuddapalli, Rajesh. "Aircraft position integrity for Differential Satellite-based Navigation in the presence of both bias and noise errors". Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1108478721.
Texto completoMacCleery, Brian C. "Position Sensorless Implementation for a Linear Switched Reluctance Machine". Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/33856.
Texto completoMaster of Science
Libros sobre el tema "Position Error"
Read, Robert R. A technique for assessing short baseline array tilt errors. Monterey, Calif: Naval Postgraduate School, 1991.
Buscar texto completoAitken, J. F. Static presssure position error calibration of the NAE T-33 C-FSKH. Ottawa: National Aeronautical Establishment, 1987.
Buscar texto completoGeorghiades, Costas N. On the synchronizability and detectability of random PPM sequences. [Washington, DC: National Aeronautics and Space Administration, 1987.
Buscar texto completoNagle, Frederick W. A description of prediction errors associated with the T-Bus-4 navigation message and a corrective procedure. Washington, D.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 1986.
Buscar texto completoPietersen, O. B. M. Experiences with two GPS SPS receivers in northern Europe. Amsterdam: National Aerospace Laboratory, 1991.
Buscar texto completoBartram, Mark. Correction: [mistake management : a positive approach for language teachers]. Editado por Walton Richard y Lewis Michael. Hove: Language Teaching Publications, 1991.
Buscar texto completoBartram, Mark. Correction: Mistake management : a positive approach for language teachers. Hove: Language Teaching Publications, 1991.
Buscar texto completoKess, Reingard. Die positive Funktion von Fehlerereignissen: Über die Auffindung und Nutzbarmachung von Fehlerpotentialen. Frankfurt am Main: P. Lang, 2006.
Buscar texto completoMuth, Lorant A. An iterative technique to correct probe position errors in planar near-field to far-field transformations. Boulder, CO: U.S. Dept. of Commerce, National Institute of Standards & Technology, 1988.
Buscar texto completoMuth, Lorant A. An iterative technique to correct probe position errors in planar near-field to far-field transformations. Boulder, CO: U.S. Dept. of Commerce, National Institute of Standards & Technology, 1988.
Buscar texto completoCapítulos de libros sobre el tema "Position Error"
Hüllermeier, Eyke y Johannes Fürnkranz. "Learning Label Preferences: Ranking Error Versus Position Error". En Lecture Notes in Computer Science, 180–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552253_17.
Texto completoNiculescu, Dragoş. "Error Characteristics of Ad Hoc Positioning Systems". En Handbook of Position Location, 871–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118104750.ch26.
Texto completoMeier, Siegfried. "From the Point Position Error to the Quality Model". En Geodesy-The Challenge of the 3rd Millennium, 365–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05296-9_37.
Texto completoXiao, Yongqiang, Hongli Wang, Lei Feng, Sihai You y Yiyang He. "Improved H∞ Filtering Method for Pulsar Position Error Estimation". En Advances in Intelligent Systems and Computing, 405–12. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5887-0_57.
Texto completoPao, Y. C. y L. C. Chang. "Feedback Control of Robot End-Effector Probable Position Error". En CAD/CAM Robotics and Factories of the Future ’90, 1178–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85838-3_157.
Texto completoWang, Gaolin, Guoqiang Zhang y Dianguo Xu. "Position Estimation Error Ripple Elimination for Model-Based Method". En Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 147–202. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_6.
Texto completoPao, Y. C. y L. C. Chang. "Feedback Control of Robot End-Effector Probable Position Error". En CAD/CAM Robotics and Factories of the Future ’90, 594–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58214-1_93.
Texto completoGeetha Priya, M. y D. C. Kiran Kumar. "Position Error Analysis of IRNSS Data Using Big Data Analytics". En Communications in Computer and Information Science, 201–9. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9059-2_19.
Texto completoChen, Shu Heng, Yao Yao Wang, Fan Quan Zeng, Deng Ming Zhang y Bing Song. "Analysis and Compensation of Angular Position Error in Servo Assembly". En Advances in Intelligent Systems and Computing, 39–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0238-5_4.
Texto completoDam, H. H., Kok Lay Teo, Yanqun Liu y S. Nordebo. "Optimum Pole Position for Digital Laguerre Network with Least Square Error Criterion". En Optimization Methods and Applications, 321–30. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3333-4_18.
Texto completoActas de conferencias sobre el tema "Position Error"
Agostini, Valentina, Samanta Rosati, Gabriella Balestra, Marco Trucco, Lorenzo Visconti y Marco Knaflitz. "Estimation of joint position error". En 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037358.
Texto completoUsami, Shogo. "Construction of Quantum Error Correcting Code for Specific Position Errors". En QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING. AIP, 2004. http://dx.doi.org/10.1063/1.1834413.
Texto completoKhanafseh, Samer, Steven Langel y Boris Pervan. "Overbounding position errors in the presence of carrier phase multipath error model uncertainty". En 2010 IEEE/ION Position, Location and Navigation Symposium - PLANS 2010. IEEE, 2010. http://dx.doi.org/10.1109/plans.2010.5507313.
Texto completoXu, Xianwu, Xiaoli Zhou, Yongqiang Cheng y Yuliang Qin. "Radar coincidence imaging with array position error". En 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2015. http://dx.doi.org/10.1109/icspcc.2015.7338780.
Texto completoHao, Qun y Dacheng Li. "Large-scale form and position error measurement". En Photonics China '98, editado por Shenghua Ye. SPIE, 1998. http://dx.doi.org/10.1117/12.318386.
Texto completoJia, Qingwei, Guoxiao Guo y Jie Yu. "Position-Error-Based Shock Protection in HDDs". En ASME 2013 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/isps2013-2911.
Texto completoJeon, Min-Ho y Chang-heon Oh. "Position Error Calibrated Using Screen Coordinate System". En Electrical Engineering 2013. Science & Engineering Research Support soCiety, 2013. http://dx.doi.org/10.14257/astl.2013.37.15.
Texto completoChen, Yufei, Guangyue Lu, Pengwu Wan y Yuanyuan Yao. "Robust Rigid Body Localization Under Position Error". En 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2021. http://dx.doi.org/10.1109/icsp51882.2021.9408688.
Texto completoJonas, M. "Detection of GNSS Horizontal Position Error Using 3D-Track Map". En 2013 Joint Rail Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/jrc2013-2445.
Texto completoZhu, Guangdong. "The Impact of Receiver Position Error on Parabolic Trough Collector Optical Performance". En ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91067.
Texto completoInformes sobre el tema "Position Error"
Wang, Fuhua y Naifeng Mao. Beam line error analysis, position correction, and graphic processing. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10108573.
Texto completoYee, Kenneth W. Alternative designs of a real-time error connector for machine-tools with encoder position feedback. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4832.
Texto completoHorst, John A. An application of measurement error propagation theory to two measurement systems used to calculate the position and heading of a vehicle on a flat surface. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4434.
Texto completoParzen, G. Effects of Position Errors of the Magnetic Center in Dipoles. Office of Scientific and Technical Information (OSTI), enero de 1990. http://dx.doi.org/10.2172/1119106.
Texto completoMichnoff, Robert. Contributions to beam position measurement errors and a plan to provide measurements with sufficient accuracy. Office of Scientific and Technical Information (OSTI), octubre de 2017. http://dx.doi.org/10.2172/1471184.
Texto completoBaldwin, David P., Stanley J. Bajic, Max Morris y Daniel Zamzow. A Study of False-Positive and False-Negative Error Rates in Cartridge Case Comparisons. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada611807.
Texto completoMuth, Lorant A. An iterative technique to correct probe position errors in planar near-field to far-field transformations. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nist.tn.1323.
Texto completoBrodie, Katherine, Brittany Bruder, Richard Slocum y Nicholas Spore. Simultaneous mapping of coastal topography and bathymetry from a lightweight multicamera UAS. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41440.
Texto completoKapelyushnyi, Anatolyi. TRANSFORMATION OF FORMS OF DEGREES OF COMPARISON OF ADJECTIVES IN LIVE TELEVISION BROADCASTING. Ivan Franko National University of Lviv, marzo de 2021. http://dx.doi.org/10.30970/vjo.2021.50.11105.
Texto completoKaffenberger, Michelle y Lant Pritchett. Women’s Education May Be Even Better Than We Thought: Estimating the Gains from Education When Schooling Ain’t Learning. Research on Improving Systems of Education (RISE), septiembre de 2020. http://dx.doi.org/10.35489/bsg-rise-wp_2020/049.
Texto completo