Literatura académica sobre el tema "Refuse and refuse disposal Recycled products"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Refuse and refuse disposal Recycled products".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Refuse and refuse disposal Recycled products"
Sung, Hsin-Chen, Yiong-Shing Sheu, Bing-Yuan Yang y Chun-Han Ko. "Municipal Solid Waste and Utility Consumption in Taiwan". Sustainability 12, n.º 8 (22 de abril de 2020): 3425. http://dx.doi.org/10.3390/su12083425.
Texto completoPohland, F. G., W. H. Cross y L. W. King. "Codisposal of Disposable Diapers with Shredded Municipal Refuse in Simulated Landfills". Water Science and Technology 27, n.º 2 (1 de enero de 1993): 209–23. http://dx.doi.org/10.2166/wst.1993.0106.
Texto completoHsieh, Chu-Lun, Wen-Hsien Tsai y Yao-Chung Chang. "Green Activity-Based Costing Production Decision Model for Recycled Paper". Energies 13, n.º 10 (12 de mayo de 2020): 2413. http://dx.doi.org/10.3390/en13102413.
Texto completoKrawczyk, Piotr, Krzysztof Badyda y Aleksandra Mikołajczak. "The environmental impact of refuse derived fuel co-combustion with lignite". MATEC Web of Conferences 240 (2018): 05013. http://dx.doi.org/10.1051/matecconf/201824005013.
Texto completoZeiss, Chris. "Hazardous material loading to municipal landfills in resource-based communities". Canadian Journal of Civil Engineering 20, n.º 3 (1 de junio de 1993): 448–56. http://dx.doi.org/10.1139/l93-059.
Texto completoZaman, Badrus, Wiharyanto Oktiawan, Mochtar Hadiwidodo, Endro Sutrisno, Purwono y Irawan Wisnu Wardana. "Potential application of biodrying to treat solid waste". E3S Web of Conferences 31 (2018): 03013. http://dx.doi.org/10.1051/e3sconf/20183103013.
Texto completoCarry, Charles W., James F. Stahl, Blair E. Hansen y Philip L. Friess. "Sludge Management and Disposal Practices of the County Sanitation Districts of Los Angeles (USA)". Water Science and Technology 22, n.º 12 (1 de diciembre de 1990): 23–32. http://dx.doi.org/10.2166/wst.1990.0097.
Texto completoJincy P.J., Anita Das Ravindranath2 y U.S. Sarma. "Ecofriendly Organosolv Process for Pulping of Tender Coconut Fibre". CORD 31, n.º 1 (1 de abril de 2015): 11. http://dx.doi.org/10.37833/cord.v31i1.64.
Texto completoHsu, Hui Mi, Hao Hsien Chen, Sao Jeng Chao, An Cheng, Cheng Yang Wu y Chuan Tsung Ma. "A Study for Substituting Part of Raw Materials by Bottom Ash in Portland Cement". Advanced Materials Research 194-196 (febrero de 2011): 1017–21. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1017.
Texto completoŚlefarski, Rafał, Joanna Jójka, Paweł Czyżewski, Michał Gołębiewski, Radosław Jankowski, Jarosław Markowski y Aneta Magdziarz. "Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products". Energies 14, n.º 6 (23 de marzo de 2021): 1779. http://dx.doi.org/10.3390/en14061779.
Texto completoTesis sobre el tema "Refuse and refuse disposal Recycled products"
Guidry, Caroline. "Modified comparative life cycle assessment of end-of-life options for post-consumer products in urban regions". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24795.
Texto completoCooke, Christina Elizabeth. "The Second-Hand Society". PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/1133.
Texto completoAdefeso, Ismail Babatunde. "Techno-economic analysis of a gasification system using refuse-derived fuel from municipal solid waste". Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2753.
Texto completoThe search for alternatives to fossil fuel is necessary with a view to reducing the negative environmental impact of fossil fuel and most importantly, to exploit an affordable and secured fuel source. This study investigated the viability of municipal solid waste gasification for a fuel cell system. Potential solid fuels obtained from the study in the form of refuse-derived fuel (RDF) had high heating value (HHV) between 18.17 MJ/Kg - 28.91 MJ/Kg with energy density increased from 4142.07 MJ/m3 to 10735.80 MJ/m3. The molecular formulas of RDF derived from Ladies Smith drop-off site, Woodstock drop-off site and an average molecular formula of all thirteen municipal solid waste (MSW) disposal facilities were CH1.43O1.02, CH1.49O1.19, and CH1.50O0.86 respectively. The comparative ratios of C/H were in the range of 7.11 to 8.90. The Thermo Gravimetric Analysis showed that the dehydration, thermal decompositions, char combustions were involved in the production of gaseous products but flaming pyrolysis stage was when most tar was converted to syngas mixture. The simulation of RDF gasification allowed a prediction of the RDF gasification behaviour under various operating parameters in an air-blown downdraft gasifier. Optimum SFR (steam flowrate) values for RDF1, RDF2 and RDF3 were determined to be within these values 2.80, 2.50 and 3.50 and Optimum ER values for RDF1, RDF2 and RDF3 were also determined to be within these values 0.15, 0.04 and 0.08. These conditions produced the desired high molar ratio of H2/CO yield in the syngas mixture in the product stream. The molar ratios of H2/CO yield in the syngas mixture in the product stream for all the RDFs were between 18.81 and 20.16. The values of H2/CO satisfy the requirement for fuel cell application. The highest concentration of heavy metal was observed for Al, Fe, Zn and Cr, namely 16627.77 mg/Kg at Coastal Park (CP), 17232.37 mg/Kg at Killarney (KL), 235.01 mg/Kg at Tygerdal (TG), and 564.87 mg/Kg at Kraaifontein (KF) respectively. The results of quantitative economic evaluation measurements were a net return (NR) of $0.20 million, a rate of return on investment (ROI) of 27.88 %, payback time (PBP) of 2.30 years, a net present value (NPV) of $1.11 million and a discounted cash flow rate of return (DCFROR) of 24.80 % and 28.20 % respectively. The results of the economic evaluations revealed that some findings of the economic benefits of this system would be viable if costs of handling MSW were further quantified into the costs analysis. The viability of the costs could depend on government responsibility to accept costs of handling MSW.
Guyemat, Mbourou Sarah Marielle. "Plastic waste gasification using a small scale IR reactor : experimental and modelling analysis". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2480.
Texto completoThe generation of municipal solid waste has increased significantly due to the exponential population growth and it has become a global issue. Gasification technology, an alternative method for waste treatment is a thermochemical process where carbon-based material are exposed to an environment deprived in oxygen, was used for this project. The aim of this thesis is to study the gasification of plastic waste which is a potential alternative energy source using infrared heaters. To achieve this goal, fundamental studies have been numerically and experimentally conducted for an infrared gasifier and subsequently establishing the temperature profile for gasification using a small scale reactor. A detailed study on low density polyethylene was conducted using Infrared Spectrometry and thermal decomposition techniques such as Thermogravimetry and Differential Scanning Calorimetry were performed to establish the temperature at which plastic pellets sample used for this research gasify. The gasification behaviour of pelletized low density polyethylene (plastic pellets) was tested and three case studies were done to evaluate the most suitable temperature profile for the reactor to gasify the low density polyethylene at high temperature for less amount of time. Subsequently, the reactor model was simulated and results validate the use of reactor at an optimum temperature of 800 °C for a gasification process with less residue content. The reactor designed for this research is fully functional and validates the temperature behaviour predicted during simulation. The experimental results show infrared heaters are suitable for gas production using this gasification process.
Mak, Hoi-ting y 麥凱婷. "The prospect of waste-to-energy facilities in Hong Kong". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43784112.
Texto completoLeung, Oi-kwan Winnie. "A preliminary study on the Hong Kong external trade of non-ferrous metal waste (and scrap) and other potentially hazardous waste materials /". Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1470934X.
Texto completoKoch, Emma Wendy. "An investigation of the chemistry involved in the mixing of an industrial effluent with fine ash". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52681.
Texto completoENGLISH ABSTRACT: Can salts present in an aqueous industrial effluent be retained by the [me ash that is produced as a by-product of gasification or by power stations utilising coal as the raw material? In order to answer this question, the actual chemistry that occurs during the mixing and settling process, needs to be understood. At the Sasol Secunda petrochemical plants in South Africa, ash is produced as a byproduct from the gasification of coal, and by the coal-fired power stations (steam plants). The [me portion of the ash (± 50J.lm in diameter) is disposed of through the use of a closed loop wet ash disposal system. The ash is transported as a slurry to the disposal sites (ash darns). The industrial effluent used to transport the ash consists mainly of the recycled ash effluent, known as clear ash effluent (CAE), as well as a variety of process waste streams containing high concentrations of salts. This mixture of ash and water is pumped to ash dams, where the ash is allowed to settle and is therefore separated from the effluent. From the ash darns the effluent flows into evaporation dams, and finally into CAE dams before being returned to the ash plant in Sasol 2 and 3 to be mixed once again with the ash. During this contact time of the ash with the water certain chemical reactions may occur. If one understands what chemical reactions occur during this process, and under what conditions they occur, then it will be possible to utilise the ash disposal system to its full potential, possibly enhancing the salt retention ability. An investigation was thus conducted into what processes actually occurs during the entire ash water contact period. The overall aim of the project was to obtain an understanding of the functioning of the [me ash disposal system so that its efficiency can be improved upon, and furthermore, so that the ash darns can be utilised more effectively in retaining salts. This investigation focussed on the chemical reactions that occur when an industrial effluent is mixed with fine ash, and consisted of four main aspects: • A literature survey on related issues. • An analysis and evaluation of the changes that occur in the actual disposal system. • Laboratory column experiments to investigate, in more detail, the different chemical reactions, which occur during the different stages of the disposal process. • The drilling of boreholes into the ash dams to obtain core material at a variety of depths and locations for analysis purposes. From this investigation it was concluded that salts are retained in the ash dams; based on the results obtained from the laboratory column experiments and the production rate of the fine ash from Sasol 2 and Sasol 3, the potential amount of salts that can be removed from the system (either due to precipitation or water retention in the ash dams) is approximately 95 tons/day. The salts that were found to be most pertinent to the wet ash disposal system utilised at Sasol, Secunda, are Ca, S04, Na, and Cl. Of these, Ca, S04 and Na were identified in literature to be the components most commonly associated with fly ash leachate. The Ca chemistry, which occurs in the ash disposal system, was explored extensively. Is was found that Ca, which is initially present in the fresh fine ash as lime, is leached from the ash into the effluent, where it reacts with carbon dioxide in the atmosphere, and is therefore removed from the system due to the precipitation of calcite. Sodium, S04, and Cl were all found to be retained in the ash; the S04 appears to be retained in a stable form within the ash, not merely due to hydraulic retention, which suggests that the ash system has the potential to act as a salt sink for S04 ions. The mechanism of salt retention in the ash darns was found to be predominantly by means of hydraulic retention, and therefore the salts have the potential to be flushed out of the ash dams into the underlying soil material. However, results from the core drilling exercise revealed that there doesn't appear to be a significant seepage of elements from the ash fill material into the underlying vertisol material. Some components (AI, Fe, Na, K, Mg, Cr, P, Ti and V) from the older, and inactive ash dam, do appear to have percolated into the underlying material. However, a significant amount of water, and therefore salts, are still retained in the ash dam. In terms of the mineralogical composition of the ash dams, a significant difference was observed between the mineral phases present in the ash fill material of an active and an inactive ash dam. Ettringite was detected throughout the borehole drilled into the inactive ash darn, and was not evident at all in the core material from the two boreholes drilled into the active dam, which suggests that this mineral is formed in the ash darns over a long time period. The minerals quartz and mullite were found in the fresh [me ash as well as in most of the core material obtained from the drilling exercise. The mineralogical composition of the ash fill samples, from the boreholes drilled into the centre of the active and inactive ash darns, was found to be very consistent with depth. This finding, combined with the fact that the chemical composition of the core samples varied more significantly in the borehole located near the edge of the active fine ash darn, indicated that the lateral position of the ash in the ash dam influences the chemical reactions that occur. Overall, from this investigation it was concluded that although the chemistry, involved in the mixing of an industrial effluent with fine ash, is extremely complex and site-specific, it is possible to determine the most significant changes which occur within a wet ash disposal system. Besides providing one with a better understanding of the working of the Secunda ash disposal system, the results of this investigation have also provided the framework for future research on this topic and related issues, i.e. the construction of a pilot scale ash darn set-up; further column experiments to investigate the extent to which S04 ions can be removed from the system; the influence of the addition of CO2 to the system; and more extensive core drilling in the vicinity of the ash darns.
AFRIKAANSE OPSOMMING: Kan soute teenwoordig in 'n industriële uitvloeisel teruggehou word in fynas geproduseer as neweproduk van steenkoolkragsentrales? Om 'n antwoord op hierdie vraag te kry, moet die chemiese reaksies wat gebeur tydens die meng en wegdoening van die as en aswater verstaan word. By die Sasol petrochemiese aanlegte in Secunda, Suid Afrika, word fynas geproduseer as 'n neweproduk in die vergassing en die stoomopwekkingprosesse. Die fynas (50)lm diameter) word weggedoen deur 'n geslote nat asstelsel. Die industriële uitvloeisel wat gebruik word vir die vervoer van die as bestaan hoofsaaklik uit hergebruikte aswater (genoem CAE - clear ash effluent), asook 'n verskeidenheid ander prosesafvalstrome wat hoë konsentrasies soute bevat. Die mengsel van as en aswater word in 'n asflodder gepomp na die asdamme, waar die as besink en sodoende geskei word van die waterfase (aswater). Vanaf die asdamme vloei die aswater na verdampingsdamme, en daarna na die CAE damme, vanwaar die CAE weer na die Sasol aanleg teruggepomp word om weer met as gemeng te word. Gedurende die kontak tussen die CAE en as gebeur sekere chemiese reaksies. Indien hierdie reaksies verstaan word, en onder watter toestande dit plaasvind, kan die asdamstelsel tot volle kapasiteit benut word deur moontlik die soutretensie binne die asdam te verhoog. 'n Ondersoek is gedoen om te bepaal watter prosesse plaasvind gedurende kontak tussen die as en water. Die doel van die ondersoek was om 'n beter begrip te kry oor die funksionering van die fynas-wegdoeningstelsel en om te bepaal of die asdamme meer effektiefbedryfkan word om moontlik meer soute te akkommodeer. Die ondersoek het uit vier hoofaspekte bestaan: • Literatuuroorsig, • 'n Analise en evaluering van die veranderinge wat plaasvind oor die asdamstelsel, • Laboratoriumskaal kolomeksperimente om in meer besonderhede die chemiese reaksies wat 'n rol in die aswaterstelsel speel, te bepaal, en • Die boor van toetsgate op die bestaande asdamme om boorkerne te ontleed by bepaalde dieptes en liggings. Uit die ondersoek is bevind dat soute wel in die asdamme behou word. As die kolomtoetse as basis gebruik word, en die produksietempo van fynas vanaf Sasol 2 en 3, dan kan daar 'n potensiële 95 ton soute per dag deur die asstelsel verwyder word (deur hoofsaaklik waterretensie en presipitasie van soute). Die mees prominente soute wat in die Sasol asstelsel voorkom is Ca, S04, Na, en Cl. Vanhierdie soute, is Ca, S04, en Na deur die literatuur geïdentifiseer as komponente wat met vliegas loog geassosieer word. Die Ca chemie, wat in die asstelsel plaasvind, is in besonderhede ontleed. Dit is bevind dat Ca, teenwoordig in die vars fynas as kalk, vanuit die as in die aswater geloog word, waar dit dan met atmosferiese CO2 reageer en dan vanuit die stelselverwyder word deur die presipitasie van kalsiet. Natrium, S04 en Cl word in die as teruggehou. Dit wil voorkom asof die S04 in 'n stabiele vorm in die as teruugehou word, nie net deur die hidrouliese retensie nie en dat die asstelsel dalk as 'n potensiële sink vir S04 kan optree. Die meganisme van soutretensie in die asdamme is hoofsaaklik deur hidrouliese retensie, met die gevolg dat die soute potensieel in die onderliggende grond uitgewas kan word. Die resultate van die boorkernondersoek wys egter dat daar nie beduidende uitwassing van hierdie soute in die grond is nie. Dit wil voorkom of sekere komponente (Al, Fe, Na, K, Mg, Cr, P, Ti en V) van die ou en onaktiewe asdam in die grond geloog is. 'n Beduidende verskil was gevind tussen die minerale fases in die asmateriaal van die aktiewe en onaktiewe asdamme. Ettringiet was teenwoordig deur die hele diepte van die boorkern van die onaktiewe dam, maar was nie teenwoordig in beide boorkerns van die gate op die aktiewe asdam nie. Dit impliseer dat hierdie mineraaloor 'n langer tyd gevorm word. Kwarts en mulliet was deurentyd in al die boorkerne teenwoordig. Die mineralogie van die boorkern van die middel van die aktiewe asdam was baie konstant met diepte (in teenstelling met dié van die boorkern op die kant van die asdam) wat daarop dui dat die laterale posisie van die as in die asdam die chemiese reaksies wat mag plaasvind kan beïnvloed. Die ondersoek bevestig dat alhoewel die chemiese reaksies betrokke in die aswaterstelsel baie kompleks en liggingspesifiek is, die mees beduidende veranderinge wat in die asstelsel plaasvind, wel bepaal kan word. Die ondersoek het benewens 'n beter begrip van hoe die asdamme reageer, ook 'n raamwerk gegee vir verdere navorsing in hierdie veld, bv. die bou van 'n loodsskaal-asdam, verdere kolomtoetse om die vermoë van die asstelsel om S04 ione te verwyder te bepaal en die invloed van gemanipuleerde kalsiet presipitasie deur die byvoeging van CO2.
Maldonado, Alameda Alex. "Alkali-activated binders based on municipal solid waste incineration bottom ash". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672107.
Texto completoEl principal subproducte generat durant la incineració de residus sòlids urbans es coneix com a cendra de fons. La seva composició és molt similars als agregats silícics naturals després d’un tractament d’envelliment on s’obté la cendra de fons madurada (weathered bottom ash; WBA segons les sigles angleses). El seu alt contingut en vidre i alumini el converteixen en un potencial candidat com a precursor en la fabricació d’aglutinants activats alcalinament (alkali-activated binders, AABs segons les sigles angleses). L’objectiu principal d’aquesta tesi doctoral va consistir en el desenvolupament de AABs mitjançant l’activació alcalina de WBA (aglutinants AA-WBA). El potencial de la WBA i els aglutinants AA-WBA es va avaluar mitjançant diferents estudis que es poden classificar en quatre blocs. Al primer bloc es va avaluar el potencial de WBA com a precursor en funció de la seva mida de partícula. Aquest estudi va demostrar el potencial de la fracció sencera i de la fracció 8-30 mm. El segon bloc es va centrar en l’estudi d’aglutinants AA-WBA que utilitzaven el WBA com a únic precursor. Es va evidenciar la influència de la concentració de la solució activadora alcalina en les propietats finals dels aglutinants AA-WBA. Els resultats van revelar la millora de les propietats mecàniques quan es va utilitzar la fracció 8-30 mm. No obstant, els resultats ambientals van revelar valors de lixiviació d'arsènic i antimoni que requerien la validació a nivell ambiental dels aglutinants. Al tercer bloc, la fracció 8-30 mm es va barrejar amb altres precursors rics en d’Al2O3 (metakaolin i PAVAL®) per millorar les propietats mecàniques i l’estabilització de metalls pesants dels aglutinants obtinguts al segon bloc. En ambdós casos, es va millorar el rendiment mecànic, tot i que les propietats ambientals van continuar mostrant valors de lixiviació que no asseguraven la viabilitat ambiental dels aglutinants AA-WBA. Finalment, al quart bloc es va realitzar una avaluació ambiental i ecotoxicològica per validar l’ús d’aglutinants AA-WBA com a material de construcció. Els resultats van mostrar un nivell mitjà-baix d’ecotoxicitat a l’AA-WBA formulat amb la fracció de 8 a 30 mm, similar als aglutinants activats amb MK (AA-MK).
Nhamo, Godwell. "Environmental policy processes surrounding South Africa's plastic bags regulations : tensions, debates and responses in waste product regulation". Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1008051.
Texto completoKMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
De, Boom Aurore. "Contribution à l'élaboration d'un procédé de valorisation des cendres volantes et des résidus d'épuration des fumées d'incinération d'ordures ménagères". Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210246.
Texto completoLes recherches présentées ici s’inscrivent dans cette tendance nouvelle et visent l’élaboration d’un procédé combinant traitement et valorisation des REFIOM.
Les REFIOM représentent en fait différents types de résidus provenant des installations que rencontrent les fumées issues de l’incinération des déchets. La composition des résidus diffère selon leur origine. Il est dès lors apparu essentiel de considérer chaque type de résidu séparément et de poursuivre l’élaboration d’un traitement sur un seul type de REFIOM. Nous avons choisi de concentrer les recherches sur les Cendres Volantes de Chaudière (CVC), ces résidus se retrouvant dans tout incinérateur.
Le traitement des CVC est basé sur l’extraction de fractions valorisables et la séparation de fractions contaminées, permettant d’obtenir des résidus acceptables en décharge ou, idéalement eux-mêmes valorisables.
Une séparation magnétique permet d’extraire environ 10% en poids des CVC mais ne semble pas exploitable dans le cadre du traitement des CVC car les particules magnétiques contiennent des impuretés (composés non magnétiques) et que le résidu final reste contaminé.
Une étude de la répartition des éléments en fonction de la taille des particules (granulochimie) est effectuée sur les CVC. Il apparaît intéressant de séparer la fraction inférieure à 38 µm obtenue lors d’une séparation granulométrique, effectuée en voie humide en utilisant une solution dense. En effet, cette fraction semble être nettement plus contaminée en Pb (soluble) que le reste des CVC. Une telle séparation constitue dès lors la première étape du traitement des CVC. Elle est suivie par des étapes de lavage des fractions obtenues, visant à extraire les sels solubles (chlorures et métaux). Les lavages sont envisagés à contre-courant afin d’utiliser au mieux l’eau de lavage. Une recirculation interne des solutions est également prévue, de sorte que, théoriquement, le procédé ne génère pas d’effluents liquides. Une étape de précipitation de composés métalliques (PbS dans ce cas-ci) est prévue après le lavage des boues.
Le procédé de traitement des CVC produirait ainsi des boues et des granulats décontaminés, des sels et des précipités métalliques. Seules certaines étapes du procédé ont été investiguées en laboratoire ;des essais supplémentaires sont encore nécessaires pour optimiser chaque étape, comprendre les phénomènes physico-chimiques qui se produisent et assurer des filières de valorisation.
/
Municipal Solid Waste Incineration (MSWI) fly ashes and Air Pollution Control (APC) residues are considered as hazardous waste according to the limits for the acceptance of waste at landfills, because high amounts of chlorides and heavy metals leach from the solids when those are in contact with water. These residues have thus to be treated before they can be accepted in landfill. Several treatments aim to limit the leaching of the residues. Beside these treatments, some research works go further the treatment and consider the valorisation of MSWI fly ashes and APC residues, e.a. in cementitious materials.
The present work follows the new trend and aims to build up a process that combines treatment and valorisation of MSWI fly ashes and APC residues.
MSWI fly ashes and APC residues come from the devices encountered by the flue gases from waste incineration. The residues composition differs according to their origin. It seems thus essential to consider each type of residues separately and to develop the treatment only on one sort of residue. Boiler Fly Ashes (BFA) were chosen because they exist in every modern MSWI plant.
The BFA treatment is based on the extraction of valorisable fractions and on the separation of contaminated fractions, which makes the final residues less hazardous; these final residues would then be acceptable in landfill, or, even better, be valorisable.
A magnetic sorting extracts ~10% (wt.) of BFA; however, such a separation would not be useful in a treatment process because the magnetic particles contain some impurities (non magnetic particles) and the final residue is still hazardous.
The repartition of the elements according to the particles size has been studied on BFA. It seems interesting to separate the BFA at 38 µm by a wet sieving process using a dense solution. The lower fraction presents a higher contamination in Pb (soluble) than the larger. Consequently, the first step of the BFA treatment consists of a wet sieving. Washing steps follow the sieving and aim to extract soluble salts (chlorides, heavy metals). These washings work in a counter-current way to optimise the use of water. The solutions are recycled in the process, which implies the absence of liquid effluents. A precipitation step of some metallic compounds (PbS in this case) is foreseen after the washing of the lower fraction.
The BFA treatment process would produce decontaminated sludge and coarse fractions, salts and metallic compounds. Some steps of the process have been investigated at lab-scale; further studies are necessary to optimise each step, to understand the observed reactions and to guarantee valorisation channels.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Libros sobre el tema "Refuse and refuse disposal Recycled products"
Khatib, Ahmad Sh. al nafiyat l'aada tadwiraha wa istikhdama. Beirut: Maktaba il-Lubnan, 2000.
Buscar texto completoʻĀphāwatcharut, Dūangčhan. Pǣng khīyư̄a hư̄ pen thun phư̄a lot kānphao khaya: Khrōngkān būranākān fưkʻoprom kānphœ̄m mūnkhā khǭnglư̄achai phư̄a lot monlaphit thāng ʻākāt čhāk kānphao dōi prachāchon misūanrūam = From waste to value to avoid garbage burning. Chīang Mai: Khrōngkān Pǣng Khīyư̄a Hư̄ Pen Thun phư̄a Lot Kānphao Khaya, Klum Sưksā Mư̄ang læ Singwǣtlǭm, Sathāban Wičhai Sangkhom, Mahāwitthayālai Chīang Mai, 2008.
Buscar texto completoKharbanda, Om Prakash. Waste management: Towards a sustainable society. New York: Auburn House, 1990.
Buscar texto completoA, Stallworthy E., ed. Waste management: Towards a sustainable society. Aldershot, Hants: Gower, 1990.
Buscar texto completoBaku, Azerbaijan S. S. R. ). Nauchno-prakticheskai︠a︡ konferent︠s︡ii︠a︡ "Utilizat︠s︡ii︠a︡ otkhodov promyshlennosti i. rudnykh mineralʹnykh mestorozhdeniĭ s. t︠s︡elʹi︠u︡ okhrany okruzhai︠u︡shcheĭ sredy i. ėkonomiki prirodnykh resursov (1989. Materialy nauchno-prakticheskoĭ konferent︠s︡ii "Utilizat︠s︡ii︠a︡ otkhodov promyshlennosti i rudnykh mineralʹnykh mestorozhdeniĭ s t︠s︡elʹi︠u︡ okhrany okruzhai︠u︡shcheĭ sredy i ėkonomiki prirodnykh resursov: 25-26 mai︠a︡ 1989 g. = "Ătraf mu̇ḣitin mu̇ḣafizăsi vă tăbii sărvătlărdăn sămărăli istifadă etmăk măgsădilă filiz-mineral i̐ataglary vă sănai̐e tullantylaryndan istifadă olunmasy" elmi-tăjru̇bi konfransynyn materiallary : 25-26 mai̐ 1989-ju il. Baky: "Elm" Năshrii̐i̐aty, 1990.
Buscar texto completoPendle, W. Common household products: A review of their potential environmental impacts and waste management options. Stevenage: Warren Spring Laboratory, 1993.
Buscar texto completoValorization of food processing by-products. Boca Raton, FL: Taylor & Francis, 2012.
Buscar texto completoKorobko, V. I. Tverdye bytovye otkhody: Ėkonomika, ėkologii︠a︡, predprinimatelʹstvo. Moskva: I︠U︡niti, 2012.
Buscar texto completoCraft your stash: Transforming craft closet treasures into gifts, home décor & more. East Petersburg, PA: Design Originals, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Refuse and refuse disposal Recycled products"
Huber, Alexander, Jorge Marx-Gomez y Claus Rautenstrauch. "Recycling and Disassembly Planning". En Environmental Information Systems in Industry and Public Administration, 397–419. IGI Global, 2001. http://dx.doi.org/10.4018/978-1-930708-02-0.ch027.
Texto completoTammemagi, Hans. "Waste". En The Waste Crisis. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195128987.003.0004.
Texto completoActas de conferencias sobre el tema "Refuse and refuse disposal Recycled products"
Davis, John C., Mike Jones y John Roderique. "Planning for Greater Levels of Diversion That Including Energy Recovery for the Mojave Desert and Mountain Recycling Authority, California Region". En 17th Annual North American Waste-to-Energy Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/nawtec17-2342.
Texto completoReynolds, Anthony, Philip R. LeGoy y Aidan Sweeney. "Waste to Energy Strategy and Approach for Ireland". En 10th Annual North American Waste-to-Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/nawtec10-1009.
Texto completoBenshak, Alice Bernard. "An Assessment of the Approaches of Construction and Demolition Waste in Jos, Plateau State of Nigeria". En Post-Oil City Planning for Urban Green Deals Virtual Congress. ISOCARP, 2020. http://dx.doi.org/10.47472/sebh6010.
Texto completoBrickner, Robert H. "Behind the Scenes: Historic Agreement to Develop U.S. Virgin Islands’ First Alternative Energy Facilities". En 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3516.
Texto completo