Literatura académica sobre el tema "Reliable quantification of uncertainty"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Reliable quantification of uncertainty".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Reliable quantification of uncertainty"
Xue, Yujia, Shiyi Cheng, Yunzhe Li y Lei Tian. "Reliable deep-learning-based phase imaging with uncertainty quantification". Optica 6, n.º 5 (7 de mayo de 2019): 618. http://dx.doi.org/10.1364/optica.6.000618.
Texto completoRussi, Trent, Andy Packard y Michael Frenklach. "Uncertainty quantification: Making predictions of complex reaction systems reliable". Chemical Physics Letters 499, n.º 1-3 (octubre de 2010): 1–8. http://dx.doi.org/10.1016/j.cplett.2010.09.009.
Texto completoXue, Yujia, Shiyi Cheng, Yunzhe Li y Lei Tian. "Reliable deep-learning-based phase imaging with uncertainty quantification: erratum". Optica 7, n.º 4 (9 de abril de 2020): 332. http://dx.doi.org/10.1364/optica.392632.
Texto completoAlrashed, Mosab, Theoklis Nikolaidis, Pericles Pilidis y Soheil Jafari. "Turboelectric Uncertainty Quantification and Error Estimation in Numerical Modelling". Applied Sciences 10, n.º 5 (6 de marzo de 2020): 1805. http://dx.doi.org/10.3390/app10051805.
Texto completoScheidt, C., I. Zabalza-Mezghani, M. Feraille y D. Collombier. "Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs". Oil & Gas Science and Technology - Revue de l'IFP 62, n.º 2 (marzo de 2007): 207–24. http://dx.doi.org/10.2516/ogst:2007018.
Texto completoTran, Anh V. y Yan Wang. "Reliable Molecular Dynamics: Uncertainty quantification using interval analysis in molecular dynamics simulation". Computational Materials Science 127 (febrero de 2017): 141–60. http://dx.doi.org/10.1016/j.commatsci.2016.10.021.
Texto completoLiu, Xuejun, Hailong Tang, Xin Zhang y Min Chen. "Gaussian Process Model-Based Performance Uncertainty Quantification of a Typical Turboshaft Engine". Applied Sciences 11, n.º 18 (8 de septiembre de 2021): 8333. http://dx.doi.org/10.3390/app11188333.
Texto completoRyu, Seongok, Yongchan Kwon y Woo Youn Kim. "A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification". Chemical Science 10, n.º 36 (2019): 8438–46. http://dx.doi.org/10.1039/c9sc01992h.
Texto completoBa, Huanhuan, Shenglian Guo, Yixuan Zhong, Shaokun He y Xushu Wu. "Quantification of the forecast uncertainty using conditional probability and updating models". Hydrology Research 50, n.º 6 (27 de septiembre de 2019): 1751–71. http://dx.doi.org/10.2166/nh.2019.094.
Texto completoZhou, Shuang, Jianguo Zhang, Lingfei You y Qingyuan Zhang. "Uncertainty propagation in structural reliability with implicit limit state functions under aleatory and epistemic uncertainties". Eksploatacja i Niezawodnosc - Maintenance and Reliability 23, n.º 2 (4 de febrero de 2021): 231–41. http://dx.doi.org/10.17531/ein.2021.2.3.
Texto completoTesis sobre el tema "Reliable quantification of uncertainty"
Elfverson, Daniel. "Multiscale Methods and Uncertainty Quantification". Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262354.
Texto completoParkinson, Matthew. "Uncertainty quantification in Radiative Transport". Thesis, University of Bath, 2019. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767610.
Texto completoCarson, J. "Uncertainty quantification in palaeoclimate reconstruction". Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29076/.
Texto completoBoopathy, Komahan. "Uncertainty Quantification and Optimization Under Uncertainty Using Surrogate Models". University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1398302731.
Texto completoCheng, Haiyan. "Uncertainty Quantification and Uncertainty Reduction Techniques for Large-scale Simulations". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/28444.
Texto completoPh. D.
Fiorito, Luca. "Nuclear data uncertainty propagation and uncertainty quantification in nuclear codes". Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/238375.
Texto completoDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Alvarado, Martin Guillermo. "Quantification of uncertainty during history matching". Texas A&M University, 2003. http://hdl.handle.net/1969/463.
Texto completoJimenez, Edwin. "Uncertainty quantification of nonlinear stochastic phenomena". Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-11092009-161351/.
Texto completoAdvisor: M.Y. Hussaini, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed on Mar. 16, 2010). Document formatted into pages; contains xii, 113 pages. Includes bibliographical references.
Kalmikov, Alexander G. "Uncertainty Quantification in ocean state estimation". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79291.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 158-160).
Quantifying uncertainty and error bounds is a key outstanding challenge in ocean state estimation and climate research. It is particularly difficult due to the large dimensionality of this nonlinear estimation problem and the number of uncertain variables involved. The "Estimating the Circulation and Climate of the Oceans" (ECCO) consortium has developed a scalable system for dynamically consistent estimation of global time-evolving ocean state by optimal combination of ocean general circulation model (GCM) with diverse ocean observations. The estimation system is based on the "adjoint method" solution of an unconstrained least-squares optimization problem formulated with the method of Lagrange multipliers for fitting the dynamical ocean model to observations. The dynamical consistency requirement of ocean state estimation necessitates this approach over sequential data assimilation and reanalysis smoothing techniques. In addition, it is computationally advantageous because calculation and storage of large covariance matrices is not required. However, this is also a drawback of the adjoint method, which lacks a native formalism for error propagation and quantification of assimilated uncertainty. The objective of this dissertation is to resolve that limitation by developing a feasible computational methodology for uncertainty analysis in dynamically consistent state estimation, applicable to the large dimensionality of global ocean models. Hessian (second derivative-based) methodology is developed for Uncertainty Quantification (UQ) in large-scale ocean state estimation, extending the gradient-based adjoint method to employ the second order geometry information of the model-data misfit function in a high-dimensional control space. Large error covariance matrices are evaluated by inverting the Hessian matrix with the developed scalable matrix-free numerical linear algebra algorithms. Hessian-vector product and Jacobian derivative codes of the MIT general circulation model (MITgcm) are generated by means of algorithmic differentiation (AD). Computational complexity of the Hessian code is reduced by tangent linear differentiation of the adjoint code, which preserves the speedup of adjoint checkpointing schemes in the second derivative calculation. A Lanczos algorithm is applied for extracting the leading rank eigenvectors and eigenvalues of the Hessian matrix. The eigenvectors represent the constrained uncertainty patterns. The inverse eigenvalues are the corresponding uncertainties. The dimensionality of UQ calculations is reduced by eliminating the uncertainty null-space unconstrained by the supplied observations. Inverse and forward uncertainty propagation schemes are designed for assimilating observation and control variable uncertainties, and for projecting these uncertainties onto oceanographic target quantities. Two versions of these schemes are developed: one evaluates reduction of prior uncertainties, while another does not require prior assumptions. The analysis of uncertainty propagation in the ocean model is time-resolving. It captures the dynamics of uncertainty evolution and reveals transient and stationary uncertainty regimes. The system is applied to quantifying uncertainties of Antarctic Circumpolar Current (ACC) transport in a global barotropic configuration of the MITgcm. The model is constrained by synthetic observations of sea surface height and velocities. The control space consists of two-dimensional maps of initial and boundary conditions and model parameters. The size of the Hessian matrix is 0(1010) elements, which would require 0(60GB) of uncompressed storage. It is demonstrated how the choice of observations and their geographic coverage determines the reduction in uncertainties of the estimated transport. The system also yields information on how well the control fields are constrained by the observations. The effects of controls uncertainty reduction due to decrease of diagonal covariance terms are compared to dynamical coupling of controls through off-diagonal covariance terms. The correlations of controls introduced by observation uncertainty assimilation are found to dominate the reduction of uncertainty of transport. An idealized analytical model of ACC guides a detailed time-resolving understanding of uncertainty dynamics. Keywords: Adjoint model uncertainty, sensitivity, posterior error reduction, reduced rank Hessian matrix, Automatic Differentiation, ocean state estimation, barotropic model, Drake Passage transport.
by Alexander G. Kalmikov.
Ph.D.
Roy, Pamphile. "Uncertainty quantification in high dimensional problems". Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0038.
Texto completoUncertainties are predominant in the world that we know. Referring therefore to a nominal value is too restrictive, especially when it comes to complex systems. Understanding the nature and the impact of these uncertainties has become an important aspect of engineering work. On a societal point of view, uncertainties play a role in terms of decision-making. From the European Commission through the Better Regulation Guideline, impact assessments are now advised to take uncertainties into account. In order to understand the uncertainties, the mathematical field of uncertainty quantification has been formed. UQ encompasses a large palette of statistical tools and it seeks to link a set of input perturbations on a system (design of experiments) towards a quantity of interest. The purpose of this work is to propose improvements on various methodological aspects of uncertainty quantification applied to costly numerical simulations. This is achieved by using existing methods with a multi-strategy approach but also by creating new methods. In this context, novel sampling and resampling approaches have been developed to better capture the variability of the physical phenomenon when dealing with a high number of perturbed inputs. These allow to reduce the number of simulation required to describe the system. Moreover, novel methods are proposed to visualize uncertainties when dealing with either a high dimensional input parameter space or a high dimensional quantity of interest. The developed methods can be used in various fields like hydraulic modelling and aerodynamic modelling. Their capabilities are demonstrated in realistic systems using well established computational fluid dynamics tools. Lastly, they are not limited to the use of numerical experiments and can be used equally for real experiments
Libros sobre el tema "Reliable quantification of uncertainty"
Soize, Christian. Uncertainty Quantification. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0.
Texto completoSullivan, T. J. Introduction to Uncertainty Quantification. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23395-6.
Texto completoGhanem, Roger, David Higdon y Houman Owhadi, eds. Handbook of Uncertainty Quantification. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-11259-6.
Texto completoDienstfrey, Andrew M. y Ronald F. Boisvert, eds. Uncertainty Quantification in Scientific Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32677-6.
Texto completoLe Maître, O. P. y Omar M. Knio. Spectral Methods for Uncertainty Quantification. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3520-2.
Texto completoGrigoriu, Mircea. Stochastic Systems: Uncertainty Quantification and Propagation. London: Springer London, 2012.
Buscar texto completoMcClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0.
Texto completoBijl, Hester, Didier Lucor, Siddhartha Mishra y Christoph Schwab, eds. Uncertainty Quantification in Computational Fluid Dynamics. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00885-1.
Texto completoMao, Zhu, ed. Model Validation and Uncertainty Quantification, Volume 3. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47638-0.
Texto completoAtamturktur, H. Sezer, Babak Moaveni, Costas Papadimitriou y Tyler Schoenherr, eds. Model Validation and Uncertainty Quantification, Volume 3. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0.
Texto completoCapítulos de libros sobre el tema "Reliable quantification of uncertainty"
Terejanu, Gabriel. "From Model Calibration and Validation to Reliable Extrapolations". En Model Validation and Uncertainty Quantification, Volume 3, 205–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29754-5_20.
Texto completoGottlieb, Allan, Utpal Banerjee, Gianfranco Bilardi, Geppino Pucci, William Carlson y Phillip Merkey. "Uncertainty Quantification". En Encyclopedia of Parallel Computing, 2103. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2400.
Texto completoBorgonovo, Emanuele. "Uncertainty Quantification". En Sensitivity Analysis, 117–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52259-3_13.
Texto completoRömer, Ulrich. "Uncertainty Quantification". En Springer Theses, 65–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41294-8_5.
Texto completoRichardson, Andrew D., Marc Aubinet, Alan G. Barr, David Y. Hollinger, Andreas Ibrom, Gitta Lasslop y Markus Reichstein. "Uncertainty Quantification". En Eddy Covariance, 173–209. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2351-1_7.
Texto completoSaouma, Victor E. y M. Amin Hariri-Ardebili. "Uncertainty Quantification". En Aging, Shaking, and Cracking of Infrastructures, 423–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57434-5_18.
Texto completoSadeghi, Behnam, Eric Grunsky y Vera Pawlowsky-Glahn. "Uncertainty Quantification". En Encyclopedia of Mathematical Geosciences, 1–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_334-1.
Texto completoSoize, Christian. "Fundamental Notions in Stochastic Modeling of Uncertainties and Their Propagation in Computational Models". En Uncertainty Quantification, 1–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_1.
Texto completoSoize, Christian. "Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media". En Uncertainty Quantification, 245–300. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_10.
Texto completoSoize, Christian. "Elements of Probability Theory". En Uncertainty Quantification, 17–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_2.
Texto completoActas de conferencias sobre el tema "Reliable quantification of uncertainty"
Tanaka, Shusei, Kaveh Dehghani y Wang Zhenzhen. "Methods for Probabilistic Uncertainty Quantification with Reliable Subsurface Assessment and Robust Decision-Making". En SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/195837-ms.
Texto completoBeck, James L. y Young Huang. "Bayesian uncertainty quantification and sparse Bayesian learning for model updating in SHM". En Joint COST TU1402 - COST TU1406 - IABSE WC1 Workshop: The Value of Structural Health Monitoring for the reliable Bridge Management. University of Zagreb Faculty of Civil Engineering, 2017. http://dx.doi.org/10.5592/co/bshm2017.2.2.
Texto completoCheng, Yueming, W. John Lee y Duane A. McVay. "Quantification of Uncertainty in Reserves Estimation From Decline Curve Analysis of Production Data for Unconventional Reservoirs". En ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29694.
Texto completoSamson, Sundeep, Sravya Thoomu, Georges Fadel y James Reneke. "Reliable Design Optimization Under Aleatory and Epistemic Uncertainties". En ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86473.
Texto completoSankaran, Sivasubramaniyan, Giuseppe Sassanelli, Giuseppe Iurisci y Andrea Panizza. "Performance Uncertainty Quantification for Centrifugal Compressors: Part 2—Flange to Flange Variability". En ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68220.
Texto completoLewis, John R., Dusty Brooks y Michael L. Benson. "Methods for Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions". En ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65552.
Texto completoMagradey, John W., Christopher C. Daniels y Heather A. Oravec. "Leak Rate Uncertainty Parametric Study". En ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69075.
Texto completoMontomoli, Francesco y Michela Massini. "Gas Turbines and Uncertainty Quantification: Impact of PDF Tails on UQ Predictions, the Black Swan". En ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94306.
Texto completoDurocher, Antoine, Philippe Versailles, Gilles Bourque y Jeffrey M. Bergthorson. "Uncertainty Quantification of NOx Emissions Induced Through the Prompt Route in Premixed Alkane Flames". En ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75579.
Texto completoRomei, A., R. Maffulli, C. Garcia Sanchez y S. Lavagnoli. "Design and Optimization of Multi-Stage Centrifugal Compressors With Uncertainty Quantification of Off Design Performance". En ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63770.
Texto completoInformes sobre el tema "Reliable quantification of uncertainty"
Croft, Stephen y Andrew Nicholson. OR14-V-Uncertainty-PD2La Uncertainty Quantification Workshop Report. Office of Scientific and Technical Information (OSTI), julio de 2017. http://dx.doi.org/10.2172/1784220.
Texto completoUrban, Nathan Mark. Climate Uncertainty Quantification at LANL. Office of Scientific and Technical Information (OSTI), abril de 2016. http://dx.doi.org/10.2172/1250690.
Texto completoStracuzzi, David, Maximillian Chen, Michael Darling, Matthew Peterson y Charlie Vollmer. Uncertainty Quantification for Machine Learning. Office of Scientific and Technical Information (OSTI), junio de 2017. http://dx.doi.org/10.2172/1733262.
Texto completoThiagarajan, J. Uncertainty Quantification in Scientific ML. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1670557.
Texto completoKarpius, Peter. Nuclide Identification, Quantification, and Uncertainty. Office of Scientific and Technical Information (OSTI), mayo de 2021. http://dx.doi.org/10.2172/1782632.
Texto completoSeifried, Jeffrey E. Adjoint-Based Uncertainty Quantification with MCNP. Office of Scientific and Technical Information (OSTI), septiembre de 2011. http://dx.doi.org/10.2172/1110395.
Texto completoSrinivasan, Gowri. Need for Uncertainty Quantification in Predictions. Office of Scientific and Technical Information (OSTI), julio de 2015. http://dx.doi.org/10.2172/1191117.
Texto completoLe MaÒitre, Olivier P., Matthew T. Reagan, Omar M. Knio, Roger Georges Ghanem y Habib N. Najm. Uncertainty quantification in reacting flow modeling. Office of Scientific and Technical Information (OSTI), octubre de 2003. http://dx.doi.org/10.2172/918251.
Texto completoNadiga, Balasubramanya T. y Emilio Baglietto. Uncertainty Quantification of Multi-Phase Closures. Office of Scientific and Technical Information (OSTI), octubre de 2017. http://dx.doi.org/10.2172/1406195.
Texto completoWilliams, Mark L. Whitepaper on Uncertainty Quantification for MPACT. Office of Scientific and Technical Information (OSTI), diciembre de 2015. http://dx.doi.org/10.2172/1255677.
Texto completo