Literatura académica sobre el tema "Runge-Kutta metody"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Runge-Kutta metody".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Runge-Kutta metody"
Jackiewicz, Zdzislaw, Rosemary Anne Renaut y Marino Zennaro. "Explicit two-step Runge-Kutta methods". Applications of Mathematics 40, n.º 6 (1995): 433–56. http://dx.doi.org/10.21136/am.1995.134306.
Texto completoHidayat, Taufik, Jenizon . y Budi Rudianto. "APLIKASI PRINSIP MAKSIMUM PONTRYAGIN DAN METODE RUNGE-KUTTA DALAM MASALAH KONTROL OPTIMAL". Jurnal Matematika UNAND 7, n.º 2 (1 de mayo de 2018): 212. http://dx.doi.org/10.25077/jmu.7.2.212-220.2018.
Texto completoSegarra, Jaime. "MÉTODOS NUMÉRICOS RUNGE-KUTTA Y ADAMS BASHFORTH-MOULTON EN MATHEMATICA". Revista Ingeniería, Matemáticas y Ciencias de la Información 7, n.º 14 (15 de julio de 2020): 13–32. http://dx.doi.org/10.21017/rimci.2020.v7.n14.a81.
Texto completoAcu, Yulia, Boni Pahlanop Lapanporo y Arie Antasari Kushadiwijayanto. "Model Sederhana Gerak Osilator dengan Massa Berubah Terhadap Waktu Menggunakan Metode Runge Kutta". POSITRON 7, n.º 2 (6 de enero de 2018): 42. http://dx.doi.org/10.26418/positron.v7i2.23276.
Texto completoRahmatullah, Sigid, Yudha Arman y Apriansyah Apriansyah. "Simulasi Gerak Osilasi Model Pegas Bergandeng Menggunakan Metode Runge-Kutta". PRISMA FISIKA 8, n.º 3 (15 de diciembre de 2020): 180. http://dx.doi.org/10.26418/pf.v8i3.43681.
Texto completoHurit, Roberta Uron y Sudi Mungkasi. "The Euler, Heun, and Fourth Order Runge-Kutta Solutions to SEIR Model for the Spread of Meningitis Disease". Mathline : Jurnal Matematika dan Pendidikan Matematika 6, n.º 2 (2 de agosto de 2021): 140–53. http://dx.doi.org/10.31943/mathline.v6i2.176.
Texto completoZheng, Zheming y Linda Petzold. "Runge–Kutta–Chebyshev projection method". Journal of Computational Physics 219, n.º 2 (diciembre de 2006): 976–91. http://dx.doi.org/10.1016/j.jcp.2006.07.005.
Texto completoTan, Jia Bo. "Symplectic Partitioned Runge-Kutta and Symplectic Runge-Kutta Methods Generated by 2-Stage RadauIA Method". Applied Mechanics and Materials 444-445 (octubre de 2013): 633–36. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.633.
Texto completoMuhammad, Raihanatu. "THE ORDER AND ERROR CONSTANT OF A RUNGE-KUTTA TYPE METHOD FOR THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM". FUDMA JOURNAL OF SCIENCES 4, n.º 2 (13 de octubre de 2020): 743–48. http://dx.doi.org/10.33003/fjs-2020-0402-256.
Texto completoSuryani, Irma, Wartono Wartono y Yuslenita Muda. "Modification of Fourth order Runge-Kutta Method for Kutta Form With Geometric Means". Kubik: Jurnal Publikasi Ilmiah Matematika 4, n.º 2 (25 de febrero de 2020): 221–30. http://dx.doi.org/10.15575/kubik.v4i2.6425.
Texto completoTesis sobre el tema "Runge-Kutta metody"
Kroulíková, Tereza. "Runge-Kuttovy metody". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392847.
Texto completoSehnalová, Pavla. "Stabilita a konvergence numerických výpočtů". Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-261248.
Texto completoElmikkawy, M. E. A. "Embedded Runge-Kutta-Nystrom methods". Thesis, Teesside University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371400.
Texto completoMacdougall, Thomas Anthony. "Global error estimators for explicit Runge-Kutta methods". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0001/MQ28227.pdf.
Texto completoTanner, Gregory Mark. "Generalized additive Runge-Kutta methods for stiff odes". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6507.
Texto completoIjaz, Muhammad. "Implicit runge-kutta methods to simulate unsteady incompressible flows". Texas A&M University, 2007. http://hdl.handle.net/1969.1/85850.
Texto completoFletcher, Matthew T. "Discovery and optimization of low-storage Runge-Kutta methods". Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45852.
Texto completoRunge-Kutta (RK) methods are an important family of iterative methods for approximating the solutions of ordinary differential equations (ODEs) and differential algebraic equations (DAEs). It is common to use an RK method to discretize in time when solving time dependent partial differential equations (PDEs) with a method-of-lines approach as in Maxwell’s Equations. Different types of PDEs are discretized in such a way that could result in a high dimensional ODE or DAE.We use a low-storage RK (LSRK) method that stores two registers per ODE dimension, which limits the impact of increased storage requirements. Classical RK methods, however, have one storage variable per stage. In this thesis we compare the efficiency and accuracy of LSRK methods to RK methods. We then focus on optimizing the truncation error coefficients for LSRK to discover new methods. Reusing the tools from the optimization method, we discover new methods for low-storage half-explicit RK (LSHERK) methods for solving DAEs.
Lui, Ho Man. "Runge-Kutta Discontinuous Galerkin method for the Boltzmann equation". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39215.
Texto completoIncludes bibliographical references (p. 85-87).
In this thesis we investigate the ability of the Runge-Kutta Discontinuous Galerkin (RKDG) method to provide accurate and efficient solutions of the Boltzmann equation. Solutions of the Boltzmann equation are desirable in connection to small scale science and technology because when characteristic flow length scales become of the order of, or smaller than, the molecular mean free path, the Navier-Stokes description fails. The prevalent Boltzmann solution method is a stochastic particle simulation scheme known as Direct Simulation Monte Carlo (DSMC). Unfortunately, DSMC is not very effective in low speed flows (typical of small scale devices of interest) because of the high statistical uncertainty associated with the statistical sampling of macroscopic quantities employed by this method. This work complements the recent development of an efficient low noise method for calculating the collision integral of the Boltzmann equation, by providing a high-order discretization method for the advection operator balancing the collision integral in the Boltzmann equation. One of the most attractive features of the RKDG method is its ability to combine high-order accuracy, both in physical space and time, with the ability to capture discontinuous solutions.
(cont.) The validity of this claim is thoroughly investigated in this thesis. It is shown that, for a model collisionless Boltzmann equation, high-order accuracy can be achieved for continuous solutions; whereas for discontinuous solutions, the RKDG method, with or without the application of a slope limiter such as a viscosity limiter, displays high-order accuracy away from the vicinity of the discontinuity. Given these results, we developed a RKDG solution method for the Boltzmann equation by formulating the collision integral as a source term in the advection equation. Solutions of the Boltzmann equation, in the form of mean velocity and shear stress, are obtained for a number of characteristic flow length scales and compared to DSMC solutions. With a small number of elements and a low order of approximation in physical space, the RKDG method achieves similar results to the DSMC method. When the characteristic flow length scale is small compared to the mean free path (i.e. when the effect of collisions is small), oscillations are present in the mean velocity and shear stress profiles when a coarse velocity space discretization is used. With a finer velocity space discretization, the oscillations are reduced, but the method becomes approximately five times more computationally expensive.
(cont.) We show that these oscillations (due to the presence of propagating discontinuities in the distribution function) can be removed using a viscosity limiter at significantly smaller computational cost.
by Ho Man Lui.
S.M.
Fenton, P. "The dynamics of variable time-stepping Runge-Kutta methods". Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394994.
Texto completoRamos, Manoel Wallace Alves. "Métodos de Euler e Runge-Kutta: uma análise utilizando o Geogebra". Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9381.
Texto completoApproved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:59:49Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 3239292 bytes, checksum: 8279cebbf86db2bb4db05f382688e5c4 (MD5)
Made available in DSpace on 2017-09-01T15:59:49Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3239292 bytes, checksum: 8279cebbf86db2bb4db05f382688e5c4 (MD5) Previous issue date: 2017-06-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Is evident the importance of ordinary differential equations in modeling problems in several areas of science. Coupled with this, is increasing the use of numerical methods to solve such equations. Computers have become an extremely useful tool in the study of differential equations, since through them it is possible to execute algorithms that construct numerical approximations for solutions of these equati- ons. This work introduces the study of numerical methods for ordinary differential equations presenting the numerical Eulerºs method, improved Eulerºs method and the class of Runge-Kuttaºs methods. In addition, in order to collaborate with the teaching and learning of such methods, we propose and show the construction of an applet created from the use of Geogebm software tools. The applet provides approximate numerical solutions to an initial value problem, as well as displays the graphs of the solutions that are obtained from the numerical Eulerºs method, im- proved Eulerºs method, and fourth-order Runge-Kuttaºs method.
É evidente a importancia das equações diferenciais ordinarias na modelagem de problemas em diversas áreas da ciência, bem como o uso de métodos numéricos para resolver tais equações. Os computadores são uma ferramenta extremamente útil no estudo de equações diferenciais, uma vez que através deles é possível executar algo- ritmos que constroem aproximações numéricas para soluções destas equações. Este trabalho é uma introdução ao estudo de métodos numéricos para equações diferen- ciais ordinarias. Apresentamos os métodos numéricos de Euler, Euler melhorado e a classe de métodos de Runge-Kutta. Além disso, com o propósito de colaborar com o ensino e aprendizagem de tais métodos, propomos e mostramos a construção de um applet criado a partir do uso de ferramentas do software Geogebra. O applet fornece soluções numéricas aproximadas para um problema de valor inicial, bem como eXibe os graficos das soluções que são obtidas a partir dos métodos numéricos de Euler, Euler melhorado e Runge-Kutta de quarta ordem.
Libros sobre el tema "Runge-Kutta metody"
Gottlieb, Sigal. Total variation diminishing Runge-Kutta schemes. Hampton, VA: National Aerospace and Space Administration, Langley Research Center, 1996.
Buscar texto completoKeeling, Stephen L. On implicit Runge-Kutta methods for parallel computations. Hampton, Va: ICASE, 1987.
Buscar texto completoCarpenter, Mark H. Fourth-order 2N-storage Runge-Kutta schemes. Hampton, Va: Langley Research Center, 1994.
Buscar texto completoKeeling, Stephen L. Galerkin/Runge-Kutta discretizations for semilinear parabolic equations. Hampton, Va: ICASE, 1987.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoEnenkel, Robert Frederick. Implementation of parallel predictor-corrector Runge-Kutta methods. Toronto: University of Toronto, Dept. of Computer Science, 1988.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoZingg, D. W. Runge-Kutta methods for linear ordinary differential equations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1997.
Buscar texto completoMerkle, Charles L. Application of Runge-Kutta schemes to incompressible flows. New York: American Institute of Aeronautics and Astronautics, 1986.
Buscar texto completoCapítulos de libros sobre el tema "Runge-Kutta metody"
Agarwal, Ravi P., Simona Hodis y Donal O’Regan. "Runge–Kutta Method". En 500 Examples and Problems of Applied Differential Equations, 163–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26384-3_6.
Texto completoPalais, Richard y Robert Palais. "Runge-Kutta Methods". En The Student Mathematical Library, 263–79. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/stml/051/14.
Texto completoFeng, Kang y Mengzhao Qin. "Symplectic Runge-Kutta Methods". En Symplectic Geometric Algorithms for Hamiltonian Systems, 277–364. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01777-3_8.
Texto completoAbdulle, Assyr. "Explicit Stabilized Runge–Kutta Methods". En Encyclopedia of Applied and Computational Mathematics, 460–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_100.
Texto completoHairer, Ernst y Gerhard Wanner. "Runge–Kutta Methods, Explicit, Implicit". En Encyclopedia of Applied and Computational Mathematics, 1282–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_144.
Texto completoRazali, N. y R. P. K. Chan. "Symmetrizers for Runge–Kutta Methods". En International Conference on Mathematical Sciences and Statistics 2013, 195–203. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-33-0_20.
Texto completoHundsdorfer, Willem y Jan Verwer. "Stabilized Explicit Runge-Kutta Methods". En Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 419–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-09017-6_5.
Texto completoHairer, Ernst, Syvert Paul Nørsett y Gerhard Wanner. "Runge-Kutta and Extrapolation Methods". En Solving Ordinary Differential Equations I, 127–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-12607-3_2.
Texto completoNørsett, Syvert P. y Harald H. Simonsen. "Aspects of parallel Runge-Kutta methods". En Numerical Methods for Ordinary Differential Equations, 103–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0089234.
Texto completoHairer, Ernst y Gerhard Wanner. "Construction of Implicit Runge-Kutta Methods". En Springer Series in Computational Mathematics, 71–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-05221-7_5.
Texto completoActas de conferencias sobre el tema "Runge-Kutta metody"
Monovasilis, Th, Z. Kalogiratou y T. E. Simos. "Exponentially fitted symplectic Runge-Kutta-Nyström methods derived by partitioned Runge-Kutta methods". En 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825720.
Texto completoMonovasilis, Theodore, Zacharoula Kalogiratou y T. E. Simos. "Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods". En INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897864.
Texto completoVoss, D. A. "Factored two-step Runge-Kutta methods". En the conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/101007.101043.
Texto completoZingg, D. y T. Chisholm. "Runge-Kutta methods for linear problems". En 12th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1756.
Texto completoEremin, Alexey. "Functional continuous Runge–Kutta–Nyström methods". En The 10'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2016. http://dx.doi.org/10.14232/ejqtde.2016.8.11.
Texto completoKarim, Samsul Ariffin Abdul, Mohd Tahir Ismail, Mohammad Khatim Hasan y Jumat Sulaiman. "Data interpolation using Runge Kutta method". En PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041644.
Texto completoMonovasilis, Th, Z. Kalogiratou y T. E. Simos. "Comparison of two derivative Runge Kutta methods". En INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2018 (ICCMSE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5079222.
Texto completoYou, Xiong, Xinmeng Yao y Xin Shu. "An Optimized Fourth Order Runge-Kutta Method". En 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.195.
Texto completoAristoff, Jeffrey y Aubrey Poore. "Implicit Runge-Kutta Methods for Orbit Propagation". En AIAA/AAS Astrodynamics Specialist Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4880.
Texto completoMonovasilis, Th, Z. Kalogiratou y T. E. Simos. "Exponentially fitted symplectic Runge-Kutta-Nyström methods". En NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756418.
Texto completoInformes sobre el tema "Runge-Kutta metody"
Tang, Hai C. Parallelizing a fourth-order Runge-Kutta method. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6031.
Texto completo