Literatura académica sobre el tema "S-wave velocity"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "S-wave velocity".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "S-wave velocity"
Valentina Socco, Laura y Cesare Comina. "Time-average velocity estimation through surface-wave analysis: Part 2 — P-wave velocity". GEOPHYSICS 82, n.º 3 (1 de mayo de 2017): U61—U73. http://dx.doi.org/10.1190/geo2016-0368.1.
Texto completoChen, S. T. "Shear‐wave logging with dipole sources". GEOPHYSICS 53, n.º 5 (mayo de 1988): 659–67. http://dx.doi.org/10.1190/1.1442500.
Texto completoSteiner, Brian, Erik H. Saenger y Stefan M. Schmalholz. "Time-reverse imaging with limited S-wave velocity model information". GEOPHYSICS 76, n.º 5 (septiembre de 2011): MA33—MA40. http://dx.doi.org/10.1190/geo2010-0303.1.
Texto completoLi, Lun y Yuanyuan V. Fu. "Surface-Wave Tomography of Eastern and Central Tibet from Two-Plane-Wave Inversion: Rayleigh-Wave and Love-Wave Phase Velocity Maps". Bulletin of the Seismological Society of America 110, n.º 3 (17 de marzo de 2020): 1359–71. http://dx.doi.org/10.1785/0120190199.
Texto completoTang, Huai-Gu, Bing-Shou He y Hai-Bo Mou. "P- and S-wave energy flux density vectors". GEOPHYSICS 81, n.º 6 (noviembre de 2016): T357—T368. http://dx.doi.org/10.1190/geo2016-0245.1.
Texto completoZhang, Zhen-Dong y Tariq Alkhalifah. "Wave-equation Rayleigh-wave dispersion inversion using fundamental and higher modes". GEOPHYSICS 84, n.º 4 (1 de julio de 2019): EN57—EN65. http://dx.doi.org/10.1190/geo2018-0506.1.
Texto completoSocco, Laura Valentina, Cesare Comina y Farbod Khosro Anjom. "Time-average velocity estimation through surface-wave analysis: Part 1 — S-wave velocity". GEOPHYSICS 82, n.º 3 (1 de mayo de 2017): U49—U59. http://dx.doi.org/10.1190/geo2016-0367.1.
Texto completoMora, Peter. "Elastic wave‐field inversion of reflection and transmission data". GEOPHYSICS 53, n.º 6 (junio de 1988): 750–59. http://dx.doi.org/10.1190/1.1442510.
Texto completoChmiel, M., A. Mordret, P. Boué, F. Brenguier, T. Lecocq, R. Courbis, D. Hollis, X. Campman, R. Romijn y W. Van der Veen. "Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field". Geophysical Journal International 218, n.º 3 (24 de mayo de 2019): 1781–95. http://dx.doi.org/10.1093/gji/ggz237.
Texto completoSu, Yuanda, Xinding Fang y Xiaoming Tang. "Measurement of the shear slowness of slow formations from monopole logging-while-drilling sonic logs". GEOPHYSICS 85, n.º 1 (6 de diciembre de 2019): D45—D52. http://dx.doi.org/10.1190/geo2019-0236.1.
Texto completoTesis sobre el tema "S-wave velocity"
KHOSRO, ANJOM FARBOD. "S-wave and P-wave velocity model estimation from surface waves". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2912984.
Texto completoIkeda, Tatsunori. "Improvement of surface wave methods for constructing subsurface S-wave velocity structures". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188570.
Texto completoLarson, Angela Marie. "S-wave velocity structure beneath the Kaapvaal Craton from surface-wave inversions compared with estimates from mantle xenoliths". Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/34200.
Texto completoMaster of Science
Freudenreich, Yann Pierre. "P- and S-wave velocity estimation from full wavefield inversion of wide-aperture seismic data". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620695.
Texto completoChan, Ne Xun. "One- and Three-dimensional P- and S-wave Velocity Models of Central and Southern Sweden Based on SNSN Data". Thesis, Uppsala universitet, Geofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-231929.
Texto completoSisman, Fatma Nurten. "Estimation Of Dynamic Soil Properties And Soil Amplification Ratios With Alternative Techniques". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615501/index.pdf.
Texto completos surface is dependent on local soil conditions. It is well known that the soft sediments on top of hard bedrock can greatly amplify the ground motion and cause severe structural damage. When the fundamental period of the soil is close to the fundamental period of a structure, structural damage increases significantly. Estimation of the fundamental periods, amplification factors and types of soils is critical in terms of reduction of loss and casualties. For the reasons stated, estimation of dynamic behavior of soils has become one of the major topics of earthquake engineering. Studies for determining dynamic properties of soils depend fundamentally on the estimation of the S-wave velocity profiles, amplification factors and ground response. In this study first, the Multi-Mode Spatial Autocorrelation (MMSPAC) method is used to estimate the S-wave velocity profiles at the sites of interest. This method is different than the other ones in the sense that it works for the higher modes as well as the fundamental mode. In the second part, Horizontal to Vertical Spectral Ratio (HVSR) method will be used on both microtremor and ground motion data. Finally, the amplification factors from alternative methods are compared with each other. Consistent results are obtained in terms of both fundamental frequencies and amplification factors.
Mainsant, Guenolé. "Variation de la vitesse des ondes de cisaillement lors de la transition solide-liquide au sein des argiles. Application aux glissements de terrain". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENU005/document.
Texto completoLandslides affect many clay slopes in the world and regularly threaten people in urban areas mountainous. These landslides are characterized by a slow velocity but they may suddenly liquefy and accelerate unexpectedly. The solid-liquid transition on the clay has been studied of Trièves region (French Alps) using rheological experiments. They have shown the yield stress thixotropic behavior with a viscosity bifurcation which can explain the catastrophic fluidization observed in the field. This loss of material stiffness can be followed by a drop in the shear wave velocity (Vs). Inclined plane test and field experiments (Pont-Bourquin landslides in Switzerland) have both shown a precursor drop of Vs indicating that it could be a good proxy for monitoring unstable clay slope
Baden, Dawin Harry. "Caractérisation des propriétés élastiques d'un réservoir carbonaté hétérogène et fracturé". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0581/document.
Texto completoCarbonate reservoirs are also exploited for water production, geothermal energy, and carbon geological storage. Their Geophysical characterization remains challenging because of complex diagenetic history. This work offers new insights into the characterization of petrophysical, and elastic properties of the Urgonian limestones in the Provence region. An integrated multi-scale approach is proposed to characterize carbonate rocks petrophysical and elastic properties. This study relies on P- and S-wave velocity (Vp and Vs) measurements carried out at laboratory (centimeter–decimeter) and field (meter–decameter) scales. Laboratory scale Vp, Vs, and anisotropy are measured on plugs and cores, while on the field they are measured between two boreholes (crosshole) over a distance of 2 m and 14 m depth. The measurements are then compared to the geology from the macro- to the microscopic scale. The main results show that the average Vp and Vs are porosity related, and are independent from scale. Anisotropy caused by fractures (15%) and heterogeneities (5%) is responsible for variations around the mean velocities. The approach adopted during this work has enabled to scope out the interplay between matrix properties, heterogeneity, fracturing, and elastic properties in carbonate rocks. It has shown that the elastic properties evolve with scale as well as the geological structures
Tichoň, Dušan. "Analýza šíření tlakové vlny v aortě". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418205.
Texto completoBianchi, Marcelo Belentani de. "Variações da estrutura da crosta, litosfera e manto para a plataforma Sul Americana através de funções do receptor para ondas P e S". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-22092008-121708/.
Texto completoTwo distinct methodologies, the P- and S-wave receiver functions, are used to map variations in the crustal parameters (thickness and Vp/Vs) and mantle interfaces (lithosphere-asthenosphere, 410 km and 660 km) on a number of different seismograph stations located in the South American plate. The results of the S receiver function for the lithosphere-asthenosphere boundary are the first of this kind ever performed in South American continent and showed the large scale variations of this interface. To perform this study we analyze data from various global permanent stations together with all available data from temporary stations operated by the IAG/USP during the last15 years. For both methods the traces (seismograms) were rotated to the LQT system, deconvolved, grouped by piercing points and stations, and finally stacked. In the stacked traces, the converted phases (Ps, Ppps, Ppss+Psps and Sp) were identified and interpreted. Inside the stable part of the plate we found a mean crustal thickness of 39.4±0.6 km, ranging from 31.0±0.5 km in Borborema Province up to 41.3±1.0 km in the Paraná Basin, where we applied a correction to remove the sediment effects on the crustal estimates. The crustal velocity ratios, Vp/Vs, showed higher values for the Paraná Basin (~1.75±0.08) and Ribeira belt (>1.74), while the cratonic regions (São Francisco and Amazon cratons) showed low values of Vp/Vs (<1.72), down to 1.68. The average Vp/Vs obtained for all stations was equal to 1.73±0.02. The observed times of the converted mantle phases presented a good correlation with other tomographic studies, indicating that the upper mantle for the cratonic roots may be characterized by a variation up to 5% in seismic velocities, a 15 km deflection in the South Paraná 660 km discontinuity (probably due to a decreased temperature caused by the subducted slab); for other regions the converted times were close to the global average. As a final result, the lithospheric thickness presented values ranging from ~40 km under oceanic islands, to ~160 km under the stable continental regions. We found that for the oceanic islands the thickness of the lithosphere is correlated with the age of the plate. When we go further inside the continents, the lithosphere-asthenosphere boundary becomes less sharp, reaching larger depths inside the continents and shallower depths near the continental margin. In the Andean subduction area, we observed two possibles lithospheres, one oceanic, subducting together with the Nazca plate, and another belonging to the Continent, parallel to the crust interface.
Libros sobre el tema "S-wave velocity"
Zielhuis, Aletta. S-wave velocity below Europe from delay-time and waveform inversions. [Utrecht: Instituut voor Aardwetenschappen de Rijksuniversiteit te Utrecht, 1992.
Buscar texto completoB, Dawson Phillip y Geological Survey (U.S.), eds. Data report for a seismic study of the P and S wave velocity structure of Redoubt Volcano, Alaska. [Menlo Park, Calif.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Buscar texto completoCapítulos de libros sobre el tema "S-wave velocity"
Soto, Jorge y Jorge E. Alva. "Estimation of Deep S-Wave Velocity Profile Using Seismic Records Case of Lima, Peru". En Current Trends in Geotechnical Engineering and Construction, 421–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7358-1_36.
Texto completoQureshi, Mohsin Usman, Suguru Yamada y Ikuo Towhata. "A Simplified Technique for Slope Stability Assessment Based on Insitu S-Wave Velocity Measurement". En Earthquake-Induced Landslides, 871–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32238-9_95.
Texto completoLee, Jeong Ki, Young H. Kim y Ho Chul Kim. "Group Velocity of Lamb Wave S0 Mode in Laminated Unidirectional CFRP Plates". En Key Engineering Materials, 2213–18. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.2213.
Texto completoLiu, Yongbo, Zhuoshi Chen, Xiaoming Yuan y Longwei Chen. "The Uncertainty of In-situ S and P Wave Velocity Test at Xichang Experimental Field of CSES". En Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 944–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_71.
Texto completoGaci, Said. "A NOVEL MODEL TO ESTIMATE S-WAVE VELOCITY INTEGRATING HÖLDERIAN REGULARITY, EMPIRICAL MODE DECOMPOSITION, AND MULTILAYER PERCEPTRON NEURAL NETWORKS". En Oil and Gas Exploration, 181–200. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119227519.ch12.
Texto completoHayashi, Koichi, Tomio Inazaki, Kaoru Kitao y Takaho Kita. "Statistical Estimation of Soil Parameters in from Cross-Plots of S-Wave Velocity and Resistivity Obtained by Integrated Geophysical Method". En Levees and Dams, 1–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27367-5_1.
Texto completoYu, Kaiwen, Changhai Han, Kang Han, Jianjun Zhao y Zhiguang Yu. "Experimental Study on Navigation Flow Condition of Downstream Approach Channel of Navigation Facilities of Baise Water Conservancy Project". En Lecture Notes in Civil Engineering, 1471–80. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_130.
Texto completoHemeda, Sayed. "Determining the S-Wave Velocity by Using Refraction Microtremors Technique". En An Integrated Geophysical and Geotechnical Assessment of Hazards Around the Abu Serga Church, 4–20. BENTHAM SCIENCE PUBLISHERS, 2021. http://dx.doi.org/10.2174/9789814998727121010003.
Texto completoNewnham, Robert E. "Acoustic waves I". En Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0025.
Texto completoCostanzo, Maria Rosaria y Concettina Nunziata. "S-wave velocity profiling for site response evaluation in urban areas". En Earthquakes and Sustainable Infrastructure, 195–213. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823503-4.00028-2.
Texto completoActas de conferencias sobre el tema "S-wave velocity"
Zhang*, Minyu y Robert R. Stewart. "S-wave velocity estimation using converted-wave VSP data". En SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0618.1.
Texto completoHuang, Zhongyu, Xu Yiming, Yu Bo y Wang Yujing. "PS‐wave statics with near‐surface S‐wave velocity models". En SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513165.
Texto completoSocco, Valentina y Daniele Boiero. "S-wave Velocity from P-wave Reflection Data: The Role of Surface Waves". En 74th EAGE Conference and Exhibition - Workshops. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20149867.
Texto completoGeng, Weifeng, Aiyuan Hou, Wenbo Zhang y Na Lei. "Acquiring S‐wave velocity using VSP converted wave of P‐wave source". En SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255740.
Texto completoJaramillo, Heman H. y Paul J. Fowler. "P‐S converted‐wave DMO indepth‐variable velocity". En SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1885725.
Texto completoZhi‐hua, Wu y Yin Xing‐yao. "Estimation of S‐wave velocity in carbonate reservoir". En Technical Program Expanded Abstracts, editado por Huimin Hao y Jie Zhang. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.4705015.
Texto completoVaezi, Y. y K. DeMeersman. "Supervirtual S-wave Refraction Interferometry for Converted Wave Statics and Near-surface S-wave Velocity Model Building". En 76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140996.
Texto completoValentina Socco, Laura y Politecnico di Torino. "P- and S-wave velocity model estimation from surface wave data". En 7th International Conference on Environment and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iceeg-16.2016.33.
Texto completoEdme, Pascal y Ed Kragh. "Near‐surface S‐wave velocity estimation from P‐wave polarization analysis". En SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255780.
Texto completoEdme, P. y E. Kragh. "Near-surface S-wave Velocity Estimation from P-wave Polarization Analysis". En 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.201401113.
Texto completoInformes sobre el tema "S-wave velocity"
Pulliam, Robert Jay. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure. Office of Scientific and Technical Information (OSTI), julio de 1991. http://dx.doi.org/10.2172/10132746.
Texto completoPark, Y., A. Nyblade, A. Rodgers y A. Al-Amri. Tomographic Imaging of Upper Mantle P- and S-wave Velocity Heterogeneity Beneath the Arabian Peninsula. Office of Scientific and Technical Information (OSTI), agosto de 2005. http://dx.doi.org/10.2172/878613.
Texto completoStokoe, Kenneth H., Song Cheng Li, Brady R. Cox y Farn-Yuh Menq. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile. Office of Scientific and Technical Information (OSTI), junio de 2007. http://dx.doi.org/10.2172/912741.
Texto completoStokoe, Kenneth H., Song Cheng Li, Brady R. Cox y Farn-Yuh Menq. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile. Office of Scientific and Technical Information (OSTI), junio de 2007. http://dx.doi.org/10.2172/912742.
Texto completoStokoe, Kenneth H., Song Cheng Li, Brady R. Cox y Farn-Yuh Menq. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile. Office of Scientific and Technical Information (OSTI), junio de 2007. http://dx.doi.org/10.2172/912743.
Texto completoToksoez, M. N. y Youshun Sun. P and S Wave Velocity Structure of the Crust and Upper Mantle Under China and Surrounding Areas From Body and Surface Wave Tomography. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2008. http://dx.doi.org/10.21236/ada486734.
Texto completoDiehl, John y Robert Steller. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part B: Overall Logs. Office of Scientific and Technical Information (OSTI), marzo de 2007. http://dx.doi.org/10.2172/912727.
Texto completoSteller, Robert y John Diehl. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part A: Interval Logs. Office of Scientific and Technical Information (OSTI), febrero de 2007. http://dx.doi.org/10.2172/912737.
Texto completoBroome, Scott y Johnny Jaramillo. P- and S-Wave velocity and Indirect Tensile Measurements for Alluvium in Support of the Source Physics Experiments. Office of Scientific and Technical Information (OSTI), mayo de 2021. http://dx.doi.org/10.2172/1821791.
Texto completoWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche y William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, diciembre de 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Texto completo