Literatura académica sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
Jennings, Michael R., Amador Pérez-Tomás, Owen J. Guy, Michal Lodzinski, Peter M. Gammon, Susan E. Burrows, James A. Covington y Philip A. Mawby. "Silicon-on-SiC, a Novel Semiconductor Structure for Power Devices". Materials Science Forum 645-648 (abril de 2010): 1243–46. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.1243.
Texto completoOliver, James D., Russ Kremer, Arnd Dietrich Weber, Kevin Nguyen y James Amano. "SEMI Standards for SiC Wafers". Materials Science Forum 924 (junio de 2018): 5–10. http://dx.doi.org/10.4028/www.scientific.net/msf.924.5.
Texto completoFUKUDA, Tetsuo, Atsunobu UNE, Akira FUKUDA y Yasuhide NAKAI. "1601 Mechanical Issues of Silicon Wafers for Semiconductor Devices". Proceedings of The Computational Mechanics Conference 2009.22 (2009): 534–35. http://dx.doi.org/10.1299/jsmecmd.2009.22.534.
Texto completoSianko, S. F. y V. A. Zelenin. "ESTIMATION OF TOPOGRAPHIC DEFECTS DIMENSIONS OF SEMICONDUCTOR SILICON STRUCTURES". Devices and Methods of Measurements 9, n.º 1 (20 de marzo de 2018): 74–84. http://dx.doi.org/10.21122/2220-9506-2018-9-1-74-84.
Texto completoSolodukha, V. A., G. G. Chigir, V. A. Pilipenko, V. A. Filipenya y V. A. Gorushko. "Reliability Express Control of the Gate Dielectric of Semiconductor Devices". Devices and Methods of Measurements 9, n.º 4 (17 de diciembre de 2018): 308–13. http://dx.doi.org/10.21122/2220-9506-2018-9-4-308-313.
Texto completoCouey, Jeremiah A., Eric R. Marsh, Byron R. Knapp y R. Ryan Vallance. "In-process force monitoring for precision grinding semiconductor silicon wafers". International Journal of Manufacturing Technology and Management 7, n.º 5/6 (2005): 430. http://dx.doi.org/10.1504/ijmtm.2005.007695.
Texto completoSreejith, P. S., G. Udupa, Y. B. M. Noor y B. K. A. Ngoi. "Recent Advances in Machining of Silicon Wafers for Semiconductor Applications". International Journal of Advanced Manufacturing Technology 17, n.º 3 (1 de enero de 2001): 157–62. http://dx.doi.org/10.1007/s001700170185.
Texto completoKurita, Kazunari, Takeshi Kadono, Satoshi Shigematsu, Ryo Hirose, Ryosuke Okuyama, Ayumi Onaka-Masada, Hidehiko Okuda y Yoshihiro Koga. "Proximity Gettering Design of Hydrocarbon–Molecular–Ion–Implanted Silicon Wafers Using Dark Current Spectroscopy for CMOS Image Sensors". Sensors 19, n.º 9 (4 de mayo de 2019): 2073. http://dx.doi.org/10.3390/s19092073.
Texto completoКукушкин, С. А., И. П. Калинкин y А. В. Осипов. "Влияние химической подготовки поверхности кремния на качество и структуру эпитаксиальных пленок карбида кремния, синтезированных методом замещения атомов". Физика и техника полупроводников 52, n.º 6 (2018): 656. http://dx.doi.org/10.21883/ftp.2018.06.45932.8758.
Texto completoHaring, Fred, Syed Sajid Ahmad, Nathan Schneck, Kaycie Gerstner, Nicole Dallman, Chris Hoffarth y Aaron Reinholz. "Spin Coating of Dielectrics on Thin Silicon To Enhance Strength Characteristics". International Symposium on Microelectronics 2010, n.º 1 (1 de enero de 2010): 000339–43. http://dx.doi.org/10.4071/isom-2010-tp5-paper3.
Texto completoTesis sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
Gibbons, Brian J. "Electromigration induced step instabilities on silicon surfaces". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1143235175.
Texto completoWang, Hongyun. "Advanced processing methods for microelectronics industry silicon wafer handling components /". Full text (PDF) from UMI/Dissertation Abstracts International, 1999. http://wwwlib.umi.com/cr/utexas/fullcit?p3004411.
Texto completoGarcia, Victoria. "Effect of dislocation density on residual stress in polycrystalline silicon wafers". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22621.
Texto completoBrun, Xavier F. "Analysis of handling stresses and breakage of thin crystalline silicon wafers". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26538.
Texto completoCommittee Chair: Melkote, Shreyes; Committee Member: Danyluk, Steven; Committee Member: Griffin, Paul; Committee Member: Johnson, Steven; Committee Member: Kalejs, Juris; Committee Member: Sitaraman, Suresh. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Lopez, Parra Marcelo. "The design, manufacture and testing of a low-cost cleanroom robot for handling silicon wafers". Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260098.
Texto completoVedantham, Vikram. "In-situ temperature and thickness characterization for silicon wafers undergoing thermal annealing". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/1181.
Texto completoSyed, Ahmed Rashid. "Non-invasive thermal profiling of silicon wafer surface during RTP using acoustic and signal processing techniques /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texto completoChien, Hsu-Yueh. "Investigation of Copper Out-Plating Mechanism on Silicon Wafer Surface". Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc278367/.
Texto completoDukic, Megan Marie. "Vibrating Kelvin Probe Measurements of a Silicon Surface with the Underside Exposed to Light". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19862.
Texto completoYoder, Karl J. "Influence of design and coatings on the mechanical reliability of semiconductor wafers". Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3190/.
Texto completoLibros sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
International Symposium on High Purity Silicon (9th 2006 Cancún, Mexico). High purity silicon 9. Editado por Claeys Cor L, Electrochemical Society. Electronics and Photonics Division. y Electrochemical Society Meeting. Pennington, NJ: Electrochemical Society, 2006.
Buscar texto completoInternational, Symposium on High Purity Silicon (9th 2006 Cancún Mexico). High purity silicon 9. Pennington, NJ: Electrochemical Society, 2006.
Buscar texto completoL, Claeys Cor, Electrochemical Society Electronics Division, Society of Photo-optical Instrumentation Engineers. y Electrochemical Society Meeting, eds. High purity silicon VII. Pennington, NJ: Electrochemical Society, 2002.
Buscar texto completoBullis, W. Murray. Evolution of silicon materials characterization: Lessons learned for improved manufacturing. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1993.
Buscar texto completoInternational Symposium on High Purity Silicon (8th 2004 Honolulu, Hawaii). High purity silicon VIII: Proceedings of the international symposium. Editado por Claeys Cor L, Electrochemical Society Electronics Division y Electrochemical Society Meeting. Pennington, NJ: Electrochemical Society, 2004.
Buscar texto completoL, Claeys Cor, Electrochemical Society Electronics Division, Electrochemical Society Meeting y Society of Photo-optical Instrumentation Engineers., eds. High purity silicon VI: Proceedings of the Sixth International Symposium. Pennington, New Jersey: Electrochemical Society, 2000.
Buscar texto completoInternational Symposium on High Purity Silicon (4th 1996 San Antonio, Tex.). Proceedings of the Fourth International Symposium on High Purity Silicon. Editado por Claeys Cor L y Electrochemical Society Electronics Division. Pennington, NJ: Electrochemical Society, 1996.
Buscar texto completoSymposium F on Techniques and Challenges for 300 mm Silicon (1998 Strasbourg, France). Techniques and challenges for 300 mm silicon: Processing, characterization, modelling and equipment : proceedings of Symposium F on Techniques and Challenges for 300 mm Silicon of the E-MRS 1998 Spring Conference, Strasbourg, France, 16-19 June 1998. Amsterdam: Elsevier, 1999.
Buscar texto completoIEEE SOS/SOI Technology Conference. (1988 St. Simons Island, Ga.). 1988 IEEE SOS/SOI Technology Workshop, October 3-5, 1988, Sea Palms Resort, St. Simons Island, Georgia, proceedings. [United States: s.n., 1988.
Buscar texto completoBullis, W. Murray. Semiconductor measurement technology: Evolution of silicon materials characterization : lessons learned for improved manufacturing. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
Forget, B. C., D. Fournier y V. E. Gusev. "Nonlinear recombinations in photoreflectance characterization of silicon wafers". En Semiconductor Materials Analysis and Fabrication Process Control, 255–59. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50053-2.
Texto completoBeyer, M., K. Budde y W. Holzapfel. "Organic contamination of silicon wafers by buffered oxide etching". En Semiconductor Materials Analysis and Fabrication Process Control, 88–92. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50021-0.
Texto completoGarrido, B., J. A. Moreno, J. Samitier y J. R. Morante. "Accurate infrared spectroscopy analysis in back-side damaged silicon wafers". En Semiconductor Materials Analysis and Fabrication Process Control, 236–39. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50049-0.
Texto completoStemmer, Michael. "Mapping of the local minority carrier diffusion length in silicon wafers". En Semiconductor Materials Analysis and Fabrication Process Control, 213–17. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50044-1.
Texto completoMitani, K., S. Saisu y M. Katayama. "Influence of Surface Charges on Four-Point-Probe Resistivity Measurement for N-Type Silicon Epitaxial Wafers". En Control of Semiconductor Interfaces, 435–40. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81889-8.50080-8.
Texto completoSuzuki, Eiichi y Yutaka Hayashi. "Evaluation of the minority carrier lifetime and diffusion coefficient of cast polycrystalline silicon wafers by the dual mercury probe method". En Semiconductor Materials Analysis and Fabrication Process Control, 218–21. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50045-3.
Texto completoAkhtar, Imtisal, Malik Abdul Rehman y Yongho Seo. "Measuring the Blind Holes: Three-Dimensional Imaging of through Silicon via Using High Aspect Ratio AFM Probe". En 21st Century Surface Science - a Handbook. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92739.
Texto completo"7. Cleaning thresholds and process efficiency A systematic determination of cleaning thresholds in both DLC and SLC should provide key information for the application of laser cleaning, as it allows to predict the minimum particle size that ca n be removed and to judge which of the two processes DLC or SLC is more efficient. On the basis of our measurements this comparison ca n be done for the first time and for a large size interval of particles. Perhaps the most striking differenc e in the two laser cleaning methods is the dependence of the cleaning threshold fluence on particl e size. Whereas in SLC this threshold appeared to be universal, i.e. size- and material-independent for the investigated particles, in DLC we found in agreement with other authors a size dependent threshold, with smaller particles being harder to remove than larger ones. Fro m this it is obvious that SLC is a more efficient method for small particles, i.e. for particles smaller than about 400 nm in diameter (for particles larger than 400 nm see below ) which is the most interesting size regarding the cleaning of bare silicon wafers in the semiconductor industry. In addition, SLC is superior to DLC in the minimum particle size that could be cleaned from silicon wafers. Recalling that the current minimum line width in ICs is 13 0 nm, which means that particles of about 60-70 nm in size have to be removed, this is a key information on the quality of a cleaning method. The lower size limit of particles that could be remove d by DLC was found to be 110 nm, compared to 60 nm and an efficiency above 90% in SLC. Summarizing the above, SL C is superior to DLC due to three crucial characteristics: its universal cleaning threshold, its lower threshold fluences for the relevant particle sizes, and its capability of removing sub 100 nm-particles. 5.2. Consequences of cleaning mechanisms involved Although in DLC no particles smaller than 100 nm could be removed, at a first glance it seems to be the more appropriate method for larger particles as its cleaning thresholds are distinctly lower than th e universal SLC threshold. However, for a judgement of the perspectives of SLC and DLC it is not sufficient to solely determine and compare cleaning efficiency and laser cleaning threshold fluence. On the contrary, as our studies above show very clearly, this comparison must be put into perspective by taking a closer look at the cleaning mechanisms involved. The most important physical process not taken into account in traditional investigations and only recently [34, 35, 38-40] studied is the local substrate ablation due to the enhancement of the laser intensity in the near field of the particles. The first, and most obvious, consequence of field enhancement is a locally increased laser fluence underneath the particle, and hence a decrease in the incident laser fluence necessary for particle removal. At a first sight this looks like a positive effect, but obviously a locally enhanced laser intensity drastically lowers the threshold for surface damage, and indeed we did observe surface damage caused either by melting (small particles) or local substrate ablation (large particles)". En Surface Contamination and Cleaning, 338–39. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-50.
Texto completoActas de conferencias sobre el tema "Semiconductor wafers. Silicon Silicon Electrodiffusion"
Pei, Z. J. y Alan Strasbaugh. "Fine Grinding of Silicon Wafers: Grinding Marks". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33458.
Texto completoDarchuk, Sergey D. y Fiodor F. Sizov. "Oxygen concentration distribution determination in silicon wafers by semiconductor IR laser spectroscopy". En International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, editado por Sergey V. Svechnikov y Mikhail Y. Valakh. SPIE, 1998. http://dx.doi.org/10.1117/12.306260.
Texto completoTricard, Marc, Paul R. Dumas, Don Golini y James T. Mooney. "Prime Silicon and Silicon-on-Insulator (SOI) Wafer Polishing With Magnetorheological Finishing (MRF)". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42149.
Texto completoTrujillo-Sevilla, J. M., J. M. Ramos-Rodriguez y J. Gaudestad. "High Speed Wafer Geometry on Silicon Wafers Using Wave Front Phase Imaging for Inline Metrology". En 2020 China Semiconductor Technology International Conference (CSTIC). IEEE, 2020. http://dx.doi.org/10.1109/cstic49141.2020.9282496.
Texto completoViolette, Lamoureux, Figarols Francois, Pic Nicolas y Vitrani Thomas. "Complementary metrology techniques to detect low levels of metallic contaminations on bare silicon wafers". En 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2019. http://dx.doi.org/10.1109/asmc.2019.8791747.
Texto completoKoitzsch, M., D. Lewke, M. Schellenberger, L. Pfitzner, H. Ryssel y H. U. Zuhlke. "Enhancements in resizing single crystalline silicon wafers up to 450 mm by using thermal laser separation". En 2012 23rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2012. http://dx.doi.org/10.1109/asmc.2012.6212923.
Texto completoZhang, J. M., J. G. Sun y Z. J. Pei. "Application of Laser Scattering on Detection of Subsurface Damage in Silicon Wafers". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41105.
Texto completoBiscarrat, J., R. Gwoziecki, Y. Baines, J. Buckley, C. Gillot, W. Vandendaele, G. Garnier, M. Charles y M. Plissonnier. "Performance enhancement of CMOS compatible 600V rated AlGaN/GaN Schottky diodes on 200mm silicon wafers". En 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2018. http://dx.doi.org/10.1109/ispsd.2018.8393637.
Texto completoZhang, X. H., Z. J. Pei y Graham R. Fisher. "Chemical Mechanical Polishing of Silicon Wafers: Finite Element Analysis of Wafer Flatness". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80271.
Texto completoKoldyaev, V., M. C. Kryger, J. P. Changala, M. L. Alles, D. M. Fleetwood, R. D. Schrimpf y N. Tolk. "Rapid non-destructive detection of sub-surface Cu in silicon-on-insulator wafers by optical second harmonic generation". En 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2015. http://dx.doi.org/10.1109/asmc.2015.7164473.
Texto completo