Literatura académica sobre el tema "Serie de Taylor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Serie de Taylor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Serie de Taylor"
Rodríguez García, Sonia E. "LA INVESTIGACIÓN TRASCENDENTAL DE CHARLES TAYLOR". Investigaciones Fenomenológicas, n.º 14 (3 de febrero de 2021): 213. http://dx.doi.org/10.5944/rif.14.2017.29642.
Texto completoMorales Paredes, Jorge, Weimar Muñoz Villate y Solón Efren Losada Herrera. "Cálculo de series armónicas de Riemann con exponente par". Ciencia e Ingeniería Neogranadina 18, n.º 1 (1 de junio de 2008): 107–16. http://dx.doi.org/10.18359/rcin.1071.
Texto completoMorales, Astrid y Francisco Cordero. "La graficación - modelación y la Serie de Taylor. Una socioepistemología del Cálculo". Revista Latinoamericana de Investigación en Matemática Educativa 17, n.º 3 (30 de noviembre de 2014): 319–45. http://dx.doi.org/10.12802/relime.13.1733.
Texto completoCubillan, Nestor, Julio Deluque-Gomez y Antenor Arcon-Osorio. "Taylor-based finite-differences generalized equations for the nonlinear optical properties calculations/Ecuaciones generalizadas de diferencias finitas basadas en series de Taylor para el cálculo de propiedades ópticas no lineales". Prospectiva 16, n.º 2 (24 de julio de 2018): 13–23. http://dx.doi.org/10.15665/rp.v16i2.1573.
Texto completoBotero Camacho, Manuel. "To dream or not to dream: incursión en la lógica de la canción de S. T. Coleridge". Razón Crítica, n.º 1 (29 de agosto de 2016): 122–47. http://dx.doi.org/10.21789/25007807.1139.
Texto completoDalthorp, Mark. "Some Taylor Series without Taylor's Theorem". Mathematics Magazine 91, n.º 2 (15 de marzo de 2018): 112. http://dx.doi.org/10.1080/0025570x.2017.1408980.
Texto completoGutiérrez Martínez, Begoña. "Dialéctivas de los personajes femeninos y masculinos en' Mad men': un análisis cuantitativo y cualitativo". Investigaciones Feministas 10, n.º 2 (20 de noviembre de 2019): 257–79. http://dx.doi.org/10.5209/infe.66493.
Texto completoArias Cascante, Nalda y Shirley León Jiménez. "Brechas de género en las mujeres (Gender breeches in working women classes)". TEC Empresarial 7, n.º 3 (5 de diciembre de 2013): 7. http://dx.doi.org/10.18845/te.v7i3.1572.
Texto completoCampos, L. M. B. C. "On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira". International Journal of Mathematics and Mathematical Sciences 13, n.º 4 (1990): 687–708. http://dx.doi.org/10.1155/s0161171290000941.
Texto completoKupka, Ivan. "Generalized Taylor Series". Advances in Analysis 3, n.º 2 (5 de abril de 2018): 67–72. http://dx.doi.org/10.22606/aan.2018.32001.
Texto completoTesis sobre el tema "Serie de Taylor"
Pulino, Filho Athail Rangel 1949. "Diferenças finitas para malhas arbitrarias : via serie de Taylor". [s.n.], 1989. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264687.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Campinas
Made available in DSpace on 2018-07-17T05:40:38Z (GMT). No. of bitstreams: 1 PulinoFilho_AthailRangel_M.pdf: 1515892 bytes, checksum: 23af25f80ea687f9347c09013ec47144 (MD5) Previous issue date: 1989
Resumo: Este trabalho apresenta duas técnicas para obtenção de equações discretas de diferenças finitas para a solução numérica de problemas de valor de contorno e de auto-valor, bidimensionais, descritos por equações diferenciais parciais de ordem igual ou inferior a 2. As duas técnicas baseiam-se na expansão em série de Taylor da função solução do problema em estudo, diferindo apenas no numero de pontos escolhidos para a montagem das moléculas (esquemas) de diferenças e no correspondente desenvolvimento algébrico para obtenção das equações discretas. A possibilidade de escolha arbitrária da localização dos pontos que compõem o domínio discreto de solução permite a elaboração de algoritmos para cálculo automático com a mesma versatilidade de algoritmos baseados no método dos elementos finitos, quer no que se refere ao tratamento de contornos curvos, quer na possibilidade de adensamento da malha em regiões em que o gradiente da função solução varie muito rapidamente. São apresentados exemplos de aplicação em condução de calor em regime permanente, Torção livre de hastes retas e vibração livre de membranas
Abstract: This work presents two procedures for obtaining discrete finite-difference equations for the numerical solution of two-dimensional second order boundary value and eigenvalue problems. These two procedures are based on the Taylor's series expansion of the solution function, and they differ from each other by the number of nodes of the difference scheme (star) and the corresponding algebraic derivation of the difference equations. A completely geometrically irregular array of nodal points opens the possibility for developing computational algorithms with the same flexibility as those based on the Finite Element Method for dealing with irregular boundaries and mesh refinement. Three example problems (Heat Conduction, Torsion of a Rod and Free Vibration of Flat Membranes) are presented
Mestrado
Mestre em Engenharia Mecânica
Perugini, Stefania. "Le funzioni circolari ed esponenziali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8694/.
Texto completoDavólio, Alessandra 1980. "Aproximações para os coeficientes de reflexão e analise de AVO". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307608.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T18:37:14Z (GMT). No. of bitstreams: 1 Davolio_Alessandra_M.pdf: 806001 bytes, checksum: 7d7f68058bc8b1bef1d6939e7aacb0d9 (MD5) Previous issue date: 2006
Resumo: O estudo dos coeficientes de reflexão, de suas aproximações e consequentemente da análise de AVO (do inglês, Amplitude Variation with Offset) desenvolve um papel bastante importante na indústria do petróleo, por auxiliar na descrição litológica da região de interesse. Neste trabalho, inicialmente abordamos as principais idéias envolvidas na dedução das equações dos coeficientes de reflexão PP (ondas P incidente e P refletida) e PS (ondas P incidente e S refletida). Na sequência, são apresentadas diferentes aproximações para estas equações, seguidas de uma análise do comportamento das mesmas quando comparadas entre si e entre suas respectivas expressões exatas. Introduzimos uma nova aproximação para o coeficiente de reflexão PS similar à impedância de reflexão do coeficiente PP proposta recentemente. Finalizamos o trabalho discutindo o conceito de inversão de dados, avaliando a precisão dos indicadores apresentados, e fazendo um breve sumário da tradicional análise de AVO
Abstract: The study of the reflection coefficients, their approximations and the AVO (Amplitude Variation with Offset) analysis plays an important role in the oil industry as they can help to describe the interest region lithology. The first part of this work deals with the main ideas of the deduction of the reflection coefficients PP (P incident and P reflected waves) and PS (P incident and S reflected waves). Then, different approximations for these equations are presented, followed by a discussion of their behavior when compared among them and with their exact expressions. We introduce a new approximation for the reflection coefficient PS similar to the reflection impedance of PP coefficient proposed recently. To conclude, some indicators and their accuracy are discussed and a brief summary about the traditional AVO analysis is presented.
Mestrado
Mestre em Matemática Aplicada
Munkhammar, Joakim. "Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series". Thesis, Uppsala University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121418.
Texto completoSeo, Dong-Won. "Performance analysis of queueing networks via Taylor series expansions". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/25098.
Texto completoTian, Haitao. "Taylor meshless method for thin plates". Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0036.
Texto completoA new class of meshless method – Taylor Meshless Method (TMM) - has been introduced that relies on an explicit solution of the Partial Differential Equations inside the domain with the help of Taylor series expansions. Because the PDE is solved analytically in the domain, one is reduced to a discrete boundary problem whose size is rather small.The effectiveness and efficiency of TMM have been verified by solving some partial differential equations. In the cases that have been studied, TMM is robust and effective. For 2D linear problems, one domain is sufficient to solve boundary value problems.TMM is used to solve Kirchhoff plate problems. Techniques in TMM help to reduce the degree of freedoms significantly so that one can increase the degree of the polynomials to a very high level. Laminated sandwich plates are studied by using TMM. Different cases are considered to test the effectiveness and efficiency of the method. The error shows exponential convergence with the increase of degree of polynomials.TMM is combined with asymptotic-numerical method (ANM) to solve large deflection problems of thin plates. The nonlinear equations are expanded in the form of power series, which leads the problem to a series of linear equations. The step length is determined automatically by a reliable path following technique. The accuracy and efficiency of ANM-TMM is verified through these examples and the method can be easily extended to other nonlinear problems.Based on the work of bending problems, the buckling of thin plates are studied. This approach fully takes the advantage of the path following technique. Thus the buckling process can be illustrated much more accurate than that by other methods. The performance of the approach is investigated by a series of benchmark buckling problems.The membrane wrinkling problems are studied. Different tension loads and imperfections are imposed to test their influence on final wrinkle patterns. The results show that TMM can accomplish convergent simulations with very small imperfections and tension loads in comparison with finite element methods. The approach of wrinkled membrane analysis by TMM has been well established
Bastos, Claudinei Martins. "Um breve estudo sobre funções e séries de Taylor". reponame:Repositório Institucional da UFABC, 2016.
Buscar texto completoDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
Inicia-se o presente trabalho apresentando ao leitor a necessidade de se apropriar profundamente dos conceitos relacionados às funções lineares e quadráticas, seu crescimento e decrescimento, estudos dos sinais e construção de seus respectivos gráficos, da resolução pelo método do varal para inequações-produto e inequações-quociente, que auxiliam na construção de gráficos de funções de graus maiores que dois, das variáveis e substituição de variáveis, bem como calcular e operar com polinômios, especialmente a divisão euclidiana e o algoritmo de Briot-Ruffini, para então estudar as sequências e séries numéricas. O estudo das séries de potências, desenvolvido no capítulo 5, é de fundamental importância na expansão do polinômio de Taylor, com suas aproximações sucessivas para as funções seno, cosseno entre outras, definidas por séries de potências e para a perfeita compreensão dos resultados presentes no capítulo final.
The present work begins by presenting to the reader the need to take a firm hold of the concepts related to linear and quadratic functions, their growth and decrement, studies of their signal and construction of their respective graphs, resolution by the factor method for product inequalities and quotient inequalities, which help constructing graphs of functions of degrees greater than two, variables and variable substitution, as well as to calculate and operate with polynomials, especially the Euclidean division and the Briot-Ruffini algorithm, and then to study the sequences and series numbers. The study of power series, developed in Chapter 5, has fundamental importance for the expansion of the Taylor polynomial, with its successive approximations for the functions sine, cosine among others, defined by power series, and for the perfect understanding of the results shown in the final chapter.
santos, Eduardo Isidoro dos. "O Polinômio e Série de Taylor: Um estudo com aplicações". Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9833.
Texto completoMade available in DSpace on 2018-05-02T16:28:27Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 6277340 bytes, checksum: 0dbd4fb516303e62d7475fa9335d391b (MD5) Previous issue date: 2017-08-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work,we present two important concepts: Taylor Polynomialand Taylor Series. We discus show theTaylor Polynomial can be used toapproximate the value of Analytic function sin the neighbor hoodo fagiven point, an destimate the precision of the approximation obtained. Subsequently,we study the possibility oflocallyre- presenting functions through a power system,called theTaylor Serie. We concludeby presenting some application sof the result sobtained.
Neste trabalho,abordamos dois conceitos importantes:o Polinômiode Taylor e a Série de Taylor. Apresentamos como o Polinômio de Taylor pode ser usado para aproximar o valor de funções analíticas na vizinhança de um ponto determinado e esti- mamos a precisão da aproximação obtida.Posteriormente,estudamos a possibilidade de representar,localmente,funções através de uma serie de potências,chamadas série de Taylor Finalizamos apresentando algumas aplicações dos resultados obtidos.
Dula, Mark, Eunice Mogusu, Sheryl Strasser, Ying Liu y Shimin Zheng. "Median and Mode Approximation for Skewed Unimodal Continuous Distributions using Taylor Series Expansion". Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/112.
Texto completoAbraao, York Mark. "Exploring the phase diagram with Taylor series: epic voyage or just another bad trip". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95229.
Texto completoLa transition de phase au point critique de la chromodynamique quantique est censé d'appartenir à la classe d'universalité d'Ising à 3D. Une méthode récemment proposée qui emploie la série de Taylor de certaines fonctions thermodynamiques pour déduire l'emplacement de ce point critique est testée avec le modèle d'Ising. La conclusion est qu'on ne peut pas compter uniquement sur les coefficients d'ordre bas de cette série pour localiser avec précision le point critique. D'ailleurs, les coefficients d'ordre supérieur sont difficiles à calculer à cause de l'incertitude statistique. Néanmoins, on trouve que la méthode décrit avec succès les caractèristiques qualitatives du diagramme des phases du modèle d'Ising. fr
Libros sobre el tema "Serie de Taylor"
Iliev, Li͡ubomir. Analytisch nichtfortsetzbare Reihen. 2a ed. Sofia: Verlag der Bulgarische Akademie der Wissenschaften, 1988.
Buscar texto completoTrukhaev, R. I. Metody infli͡u︡entnogo analiza vysokikh pori͡a︡dkov. Leningrad: Izd-vo "Nauka," Leningradskoe otd-nie, 1987.
Buscar texto completoBowman, K. O. Properties of estimators for the gamma distribution. New York: Marcel Dekker, 1988.
Buscar texto completoMuth, Lorant A. An iterative technique to correct probe position errors in planar near-field to far-field transformations. Boulder, CO: U.S. Dept. of Commerce, National Institute of Standards & Technology, 1988.
Buscar texto completoMuth, Lorant A. An iterative technique to correct probe position errors in planar near-field to far-field transformations. Boulder, CO: U.S. Dept. of Commerce, National Institute of Standards & Technology, 1988.
Buscar texto completoV, Bystrov L., ed. Primenenie sistemy analiticheskikh vychisleniĭ v zadachakh parametricheskoĭ identifikat͡s︡ii kineticheskikh modeleĭ. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1986.
Buscar texto completoCockrell, C. R. Asymptotic Waveform Evaluation (AWE) technique for frequency domain electromagnetic analysis. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoZhukova, Galina y Margarita Rushaylo. The mathematical analysis. Volume 2. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072172.
Texto completoTaylor, James Hudson. Hudson Taylor's legacy: A series of meditations. Fearn, Ross-shire: Christian Focus, 1999.
Buscar texto completoFamous players: The mysterious death of William Desmond Taylor. New York: NBM Comics Lit, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Serie de Taylor"
Presilla, Carlo. "Serie di Taylor e Laurent". En UNITEXT, 99–118. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1830-3_8.
Texto completoPresilla, Carlo. "Serie di Taylor e Laurent". En UNITEXT, 115–34. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5501-8_8.
Texto completoShekhar, Shashi y Hui Xiong. "Taylor Series". En Encyclopedia of GIS, 1147. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1369.
Texto completoOberguggenberger, Michael y Alexander Ostermann. "Taylor Series". En Analysis for Computer Scientists, 165–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91155-7_12.
Texto completoOberguggenberger, Michael y Alexander Ostermann. "Taylor Series". En Analysis for Computer Scientists, 149–57. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_12.
Texto completoKhoury, Richard y Douglas Wilhelm Harder. "Taylor Series". En Numerical Methods and Modelling for Engineering, 67–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21176-3_5.
Texto completoLittle, Charles H. C., Kee L. Teo y Bruce van Brunt. "Taylor Polynomials and Taylor Series". En Real Analysis via Sequences and Series, 399–421. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2651-0_8.
Texto completoThirioux, Xavier y Alexis Maffart. "Taylor Series Revisited". En Theoretical Aspects of Computing – ICTAC 2019, 335–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32505-3_19.
Texto completoBarrio, Roberto. "Taylor Series Methods". En Encyclopedia of Applied and Computational Mathematics, 1465–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_153.
Texto completoBerck, Peter y Knut Sydsæter. "Series. Taylor formulas". En Economists’ Mathematical Manual, 31–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-11597-8_7.
Texto completoActas de conferencias sobre el tema "Serie de Taylor"
Berz, Martin. "From Taylor series to Taylor models". En Beam stability and nonlinear dynamics. American Institute of Physics, 1997. http://dx.doi.org/10.1063/1.53493.
Texto completoKraus, Michal, Jiri Kunovsky y Vaclav Satek. "Taylor Series Numerical Integrator". En 2008 Second UKSIM European Symposium on Computer Modeling and Simulation (EMS). IEEE, 2008. http://dx.doi.org/10.1109/ems.2008.40.
Texto completoKunovsky, Jiri. "Modern Taylor Series Method". En 2015 IEEE 13th International Scientific Conference on Informatics. IEEE, 2015. http://dx.doi.org/10.1109/informatics.2015.7377798.
Texto completoKraus, Michal, Jirí Kunovský, Milan Pindryc y Václav átek. "Taylor Series in Control Theory". En Tenth International Conference on Computer Modeling and Simulation (uksim 2008). IEEE, 2008. http://dx.doi.org/10.1109/uksim.2008.45.
Texto completoChang, Y. F. "Solving STIFF systems by Taylor series". En the conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/101007.101033.
Texto completoChaloupka, Jan, Jiří Kunovský, Alžběta Martinkovičová, Václav Šátek y Elvira Thonhofer. "Multiple integral computations using Taylor series". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913137.
Texto completoKocina, Filip, Gabriela Nečasová, Petr Veigend, Jan Chaloupka, Václav Šátek y Jiří Kunovský. "Modelling VLSI circuits using Taylor series". En INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992513.
Texto completoKunovský, Jirí, Martina Drozdová, Jan Kopriva y Milan Pindryc. "Methodology of the Taylor Series Based Computations". En 2009 Third Asia International Conference on Modelling & Simulation. IEEE, 2009. http://dx.doi.org/10.1109/ams.2009.73.
Texto completoYu, Kegen, Y. Jay Guo y Ian Oppermann. "Modified Taylor Series Expansion Based Positioning Algorithms". En 2008 IEEE Vehicular Technology Conference (VTC 2008-Spring). IEEE, 2008. http://dx.doi.org/10.1109/vetecs.2008.582.
Texto completoPilkington, Mark y Walter R. Roest. "Draping aeromagnetic data using the taylor series". En SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, 1992. http://dx.doi.org/10.1190/1.1822140.
Texto completoInformes sobre el tema "Serie de Taylor"
La Mon, K. Removal of Singularities from Taylor Series. Office of Scientific and Technical Information (OSTI), agosto de 1989. http://dx.doi.org/10.2172/1000851.
Texto completoHERRERA, J. THE ALGEBRA OF TAYLOR SERIES AND THE ROOTS OF A GENERAL POLYNOMIAL. Office of Scientific and Technical Information (OSTI), octubre de 2002. http://dx.doi.org/10.2172/804616.
Texto completoIwashige, Kengo y Takashi Ikeda. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method. Office of Scientific and Technical Information (OSTI), septiembre de 1995. http://dx.doi.org/10.2172/115072.
Texto completo