Literatura académica sobre el tema "Shack- Hartmann Sensor"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Shack- Hartmann Sensor".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Shack- Hartmann Sensor"

1

Siv, Julie, Rafael Mayer, Guillaume Beaugrand, Guillaume Tison, Rémy Juvénal y Guillaume Dovillaire. "Testing and characterization of challenging optics and optical systems with Shack Hartmann wavefront sensors". EPJ Web of Conferences 215 (2019): 06003. http://dx.doi.org/10.1051/epjconf/201921506003.

Texto completo
Resumen
The Shack-Hartman wavefront sensor is a common metrology tool in the field of laser, adaptive optics and astronomy. However, this technique is still scarcely used in optics and optical system metrology. With the development of manufacturing techniques and the increasing need for optical characterization in the industry, the Shack-Hartmann wavefront sensor emerges as an efficient complementary tool to the well-established Fizeau interferometry for optical system metrology. Moreover, the raise of smart vehicles equipped with optical sensors and augmented reality, the optical characterization of glass and transparent flat materials becomes an issue that can be addressed with Shack-Hartmann sensors. Aberration measurements of challenging optics will be presented such as optical filters, thin flat optics, aspheric lenses and large optical assemblies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Seifert, L., J. Liesener y H. J. Tiziani. "The adaptive Shack–Hartmann sensor". Optics Communications 216, n.º 4-6 (febrero de 2003): 313–19. http://dx.doi.org/10.1016/s0030-4018(02)02351-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rha, Jungtae. "Reconfigurable Shack-Hartmann wavefront sensor". Optical Engineering 43, n.º 1 (1 de enero de 2004): 251. http://dx.doi.org/10.1117/1.1625950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jain, Prateek y Jim Schwiegerling. "RGB Shack–Hartmann wavefront sensor". Journal of Modern Optics 55, n.º 4-5 (20 de febrero de 2008): 737–48. http://dx.doi.org/10.1080/09500340701467728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MANSURIPUR, MASUD. "The Shack-Hartmann Wavefront Sensor". Optics and Photonics News 10, n.º 4 (1 de abril de 1999): 48. http://dx.doi.org/10.1364/opn.10.4.000048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhao, Liping, Wenjiang Guo, Xiang Li y I.-Ming Chen. "Reference-free Shack–Hartmann wavefront sensor". Optics Letters 36, n.º 15 (19 de julio de 2011): 2752. http://dx.doi.org/10.1364/ol.36.002752.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Xia, Fei, David Sinefeld, Bo Li y Chris Xu. "Two-photon Shack–Hartmann wavefront sensor". Optics Letters 42, n.º 6 (10 de marzo de 2017): 1141. http://dx.doi.org/10.1364/ol.42.001141.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Podanchuk, Dmytro V. "Shack-Hartmann wavefront sensor with holographic memory". Optical Engineering 42, n.º 11 (1 de noviembre de 2003): 3389. http://dx.doi.org/10.1117/1.1614264.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pfund, Johannes, Norbert Lindlein y Johannes Schwider. "Misalignment effects of the Shack–Hartmann sensor". Applied Optics 37, n.º 1 (1 de enero de 1998): 22. http://dx.doi.org/10.1364/ao.37.000022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Basden, Alastair, Deli Geng, Dani Guzman, Tim Morris, Richard Myers y Chris Saunter. "Shack-Hartmann sensor improvement using optical binning". Applied Optics 46, n.º 24 (14 de agosto de 2007): 6136. http://dx.doi.org/10.1364/ao.46.006136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Shack- Hartmann Sensor"

1

Curatu, Costin. "Wavefront Sensor for Eye Aberrations Measurements". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2274.

Texto completo
Resumen
Ocular wavefront sensing is vital to improving our understanding of the human eye and to developing advanced vision correction methods, such as adaptive optics, customized contact lenses, and customized laser refractive surgery. It is also a necessary technique for high-resolution imaging of the retina. The most commonly used wavefront sensing method is based on the Shack-Hartmann wavefront sensor. Since Junzhong Liang's first application of Shack-Hartmann wavefront sensing for the human eye in 1994, the method has quickly gained acceptance and popularity in the ophthalmic industry. Several commercial Shack-Hartmann eye aberrometers are currently available. While the existing aberrometers offer reasonable measurement accuracy and reproducibility, they do have a limited dynamic range. Although rare, highly aberrated eyes do exists (corneal transplant, keratoconus, post-lasik) that cannot be measured with the existing devices. Clinicians as well as optical engineers agree that there is room for improvement in the performance of these devices "Although the optical aberrations of normal eyes have been studied by the Shack-Hartmann technique, little is known about the optical imperfections of abnormal eyes. Furthermore, it is not obvious that current Shack-Hartmann aberrometers are robust enough to successfully measure clinically abnormal eyes of poor optical quality" Larry Thibos, School of Optometry, Indiana University. The ultimate goal for ophthalmic aberrometers and the main objective of this work is to increase the dynamic range of the wavefront sensor without sacrificing its sensitivity or accuracy. In this dissertation, we attempt to review and integrate knowledge and techniques from previous studies as well as to propose our own analytical approach to optimizing the optical design of the sensor in order to achieve the desired dynamic range. We present the underlying theory that governs the relationship between the performance metrics of the sensor: dynamic range, sensitivity, spatial resolution, and accuracy. We study the design constraints and trade-offs and present our system optimization method in detail. To validate the conceptual approach, a complex simulation model was developed. The comprehensive model was able to predict the performance of the sensor as a function of system design parameters, for a wide variety of ocular wavefronts. This simulation model did confirm the results obtained with our analytical approach. The simulator itself can now be used as a standalone tool for other Shack-Hartmann sensor designs. Finally, we were able to validate our theoretical work by designing and building an experimental prototype. We present some of the more practical design aspects, such as illumination choices and tolerance analysis methods. The prototype validated the conceptual approach used in the design and was able to demonstrate a vast increase in dynamic range while maintaining accurate and repeatable measurements.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Brooks, Jonathan Mark. "A compact Shack-Hartmann wavefront sensor for the eye". Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416449.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Schatz, Lauren H., R. Phillip Scott, Ryan S. Bronson, Lucas R. W. Sanchez y Michael Hart. "Design of wide-field imaging shack Hartmann testbed". SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622718.

Texto completo
Resumen
Standard adaptive optics systems measure the aberrations in the wavefronts of a beacon guide star caused by atmospheric turbulence, which limits the corrected field of view to the isoplanatic patch, the solid angle over which the optical aberration is roughly constant. For imaging systems that require a corrected field of view larger than the isoplanatic angle, a three-dimensional estimate of the aberration is required. We are developing a wide-field imaging Shack-Hartmann wavefront sensor (WFS) that will characterize turbulence over a large field of view tens of times the size of the isoplanatic angle. The technique will find application in horizontal and downward looking remote sensing scenarios where high resolution imaging through extended atmospheric turbulence is required. The laboratory prototype system consists of a scene generator, turbulence simulator, a Shack Hartman WFS arm, and an imaging arm. The system has a high intrinsic Strehl ratio, is telecentric, and diffraction limited. We present preliminary data and analysis from the system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Smith, Daniel Gene. "High Dynamic Range Calibration for an Infrared Shack-Hartmann Wavefront Sensor". Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/194779.

Texto completo
Resumen
Since its invention in the early seventies, the Shack-Hartmann wavefront sensor has seen a wide variety of applications and has had great success in the fields of Adaptive Optics and Ophthalmology, where interferometry is usually impractical. Its application to optical shop testing has been less visible perhaps because shop environments can be manipulated to sufficiently remove vibration and turbulence to a degree that can support interferometry. However, with the growing need to accurately test aspheric optics, the Shack-Hartmann has an advantage; its dynamic range can be manipulated through the design of the lenslet array, rather than being directly tied to the wavelength of light and therefore lessen the need for expensive null optics.When the Shack-Hartmann is pushed to the limits of dynamic range, several issues must be dealt with. First, to reach the limits of dynamic range, those limits must be well understood. This dissertation presents a graphical approach to designing the Shack-Hartmann sensor that makes the trade-off between sensitivity and dynamic range, and accuracy and resolution intuitively clear. Next, the spots that once landed neatly in the region behind each lenslet, may now wander several lenslets away and the data reduction must be able handle this. This dissertation presents a novel and robust method for sorting these widely wondering spots and is shown to work in measurements of highly aspheric elements. Finally, in the high dynamic range regime, induced aberrations can severely limit the accuracy of the instrument. In this dissertation, these non-linear and measurement-dependent errors are studied in detail and a method of compensation is presented along with experimental results that illustrate the efficacy of the approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pui, Boon Hean. "CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor". Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/13846/.

Texto completo
Resumen
A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Nirmaier, Thomas. "A CMOS-based Hartmann-Shack sensor for real-time adaptive optical applications". [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968388280.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Oliveira, Otavio Gomes de. "Optimized microlens-array geometry for Hartmann-Shack wavefront sensor: design, fabrication and test". Universidade Federal de Minas Gerais, 2012. http://hdl.handle.net/1843/BUOS-8U5NQT.

Texto completo
Resumen
The Hartmann-Shack (H-S) wavefront sensor is now deployed in many different fields, from astronomy to industrial inspection, where the quality of optical media or components can be measured by the distortions (wavefront aberrations) they impart on a wavefront transmitted or reflected by them. In ophthalmology, this sensor is a core component of major aberrometers, used in the assessment of the visual quality of the eye, academic research and clinical diagnosis. The H-S wavefront sensor is also found in adaptive optics (AO) systems, which are used to improve the quality and the capabilities of optical systems, by compensating for wavefront aberrations that affect light waves. These image distortions can represent a serious problem in many different applications where high-quality images are demanded. The microlens array is an important element in the H-S sensor, responsible for sampling the aberrated wavefront into light spots on the focal plane. The position of each light spot relates to the average tilt of the wavefront over the respective microlens. These spot­position coordinates are then used in the modal reconstruction to approximate the wavefront topology with a combination of orthogonal basis functions. The wavefront reconstruction error describes the deviation of the reconstructed wavefront from the reference one. The wavefront sampling is influenced by the microlens distribution pattern in the array, lens contour and size, number of microlenses and fill factor. Adopted grids typically consist in either rectangular or hexagonal configurations. The influence of the array geometry on the wavefront reconstruction error was already discussed in the literature, which demonstrated that random arrays might perform better than regular ones. This work proposes the optimization of the microlens-array geometry to be used in a specific context, such as ophthalmology. The workflow consisted of three major steps: numerical optimization, to find the optimal microlens arrays; fabrication of the arrays; and test on an optical bench, to comparatively assess the performance of the fabricated and commercial arrays. The optimization comprises the minimization of the wavefront reconstruction error and/or the number of necessary microlenses in the array, considering a known aberration statistics. Within the ophthalmological context, as a case study, it was demonstrated by the numerical simulations that 10 or 16 suitably located microlenses can be used to produce reconstruction errors as small as those of a 36-microlens rectangular array. The optimized arrays were then fabricated in a clean room, where KOH anisotropic etching was used to obtain the silicon molds from which the microlens arrays were replicated on polymer by casting. Four arrays were fabricated: 10- and 16-microlens optimized arrays and 16 and 36-microlens rectangular arrays. All four arrays were tested and compared to a standard 127-microlens hexagonal commercial array, using an arbitrary wavefront aberration, which is compatible with the used ophthalmological wavefront-aberration statistics. The final results corroborate with the predictions of the computational simulations.
O sensor de frente de ondas de Hartmann-Shack (H-S) é aplicado a diversas áreas do conhecimento, da astronomia à inspeção industrial, em que a qualidade de meios ou componentes ópticos pode ser medida através das distorções (aberrações de frentes de onda) que eles inserem em uma frente de onda, seja por reflexão ou refração. Em oftalmologia, este sensor é um componente central da maioria dos aberrômetros, que são usados na avaliação da qualidade óptica do olho, em pesquisas e em diagnóstico clínico. O sensor de frentes de onda de H-S é também encontrado em sistemas ópticos adaptativos, que são usados para aumentar a qualidade de sistemas ópticos, por meio da compensação de aberrações de frentes de onda. Essas distorções nas frentes de onda podem representar um sério problema em diversas aplicações que requerem imagens de alta qualidade. A matriz de microlentes é um importante elemento no sensor de H-S responsável pela amostragem da frente de onda aberrada em pontos de luz no flano focal. A posição de cada ponto de luz relaciona a inclinação média da parte da frente de onda amostrada pela respectiva microlente. As coordenadas das posições de todos os pontos de luz são usados no processo de reconstrução modal para aproximar a topologia real da frente de onda através de uma combinação de funções ortonormais. O desvio dessa aproximação é chamado de erro de reconstrução. A amostragem da frente de onda é influenciada pelo padrão de distribuição das microlentes na matriz, formato e tamanho das microlentes, número de microlentes e fator de preenchimento da matriz. As matrizes comumente encontradas no mercado possuem, em geral, configura·o retangular ou hexagonal. A influência da geometria da matriz sobre o erro de reconstrução já foi discutido na literatura, que demonstrou que geometrias aleatórias podem apresentar performance melhor do que as geometrias regulares. Este trabalho propôs a otimização da geometria da matriz de microlentes para ser usada em um contexto específico, como oftalmologia. O trabalho consistiu de três fases: optimização numéica, para encontrar as matrizes ótimas; fabricação e teste em bancada óptica, para avaliar comparativamente a performance das matrizes fabricadas e uma matriz comercial. A otimização consiste na minimização do erro de reconstrução e/ou do número de microlentes necessárias na matriz, considerando uma estatística de aberrações conhecida. No contexto oftalmológico, usado como estudo de caso, foi demonstrado pelas simula·es que matrizes otimizadas com 10 ou 16 microlentes podem ser usadas para produzir erros de reconstrução da mesma ordem que matrizes retangulares com 36 microlentes. As matrizes otimizadas foram então fabricadas em uma sala limpa, onde corrosão anisotróica por KOH foi utilizada para obter-se moldes dos quais as microlentes foram replicadas em polímero. Foram fabricadas as matrizes otimizadas com 10 e 16 microlentes e também as matrizes retangulares com 16 e 36 microlentes. Todas as matrizes foram testadas e comparadas com uma matriz hexagonal comercial, com 127 microlentes. Os testes foram feitos com uma aberração arbitrária, mas compatível com a estatística estudada. Os resultados finais corroboram com os previstos pelas simula·es computacionais.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Adil, Fatime Zehra. "Development Of An Optical System Calibration And Alignment Methodology Using Shack-hartmann Wavefront Sensor". Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615591/index.pdf.

Texto completo
Resumen
Shack-Hartmann wavefront sensors are commonly used in optical alignment, ophthalmology, astronomy, adaptive optics and commercial optical testing. Wavefront error measurement yields Zernike polynomials which provide useful data for alignment correction calculations. In this thesis a practical alignment method of a helmet visor is proposed based on the wavefront error measurements. The optical system is modeled in Zemax software in order to collect the Zernike polynomial data necessary to relate the error measurements to the positioning of the visor. An artificial neural network based computer program is designed and trained with the data obtained from Zernike simulation in Zemax software and then the program is able to find how to invert the misalignments in the system. The performance of this alignment correction method is compared with the optical test setup measurements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Chin, Sem Sem. "Adaptive optics, aberration dynamics and accomodation control : an investigation of the properties of ocular aberrations, and their role in accomodation control". Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/4291.

Texto completo
Resumen
This thesis consists of two parts: a report on the use of a binocular Shack-Hartmann (SH) sensor to study the dynamic correlation of ocular aberrations; and the application of an adaptive optics (AO) system to investigate the effect of the manipulation of aberrations on the accommodation control. The binocular SH sensor consists of one laser source and one camera to reduce system cost and complexity. Six participants took part in this study. Coherence function analysis showed that coherence values were dependent on the subject, aberration and frequency component. Inter-ocular correlations of the aberration dynamics were fairly weak for all participants. Binocular and monocular viewing conditions produced similar wavefront error dynamics. The AO system has a dual wavefront sensing channel. The extra sensing channel permits direct measurement of the eye's aberrations independent of the deformable mirror. Dynamic correction of aberrations during steady-state fixation did not affect the accommodation microfluctuations, possibly due to the prior correction of the static aberration level and/or the limited correction bandwidth. The inversion of certain aberrations during dynamic accommodation affected the gain and latency of accommodation response (AR), suggesting that the eye used the aberrations to guide its initial path of accommodative step response. Corrections of aberrations at various temporal locations of AR cycle produced subject- and aberration-dependent results. The gain and phase lag of the AR to a sinusoidally moving target were unaffected by aberration correction. The predictable nature of the target had been suggested as the reason for its failure to produce any significant effect on the AR gain and phase lag.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Santos, Jesulino Bispo dos. "Sensor de frente de onda para uso oftalmológico". Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-03122004-124215/.

Texto completo
Resumen
Este trabalho descreve os passos envolvidos no desenvolvimento de um protótipo de aberroscópio para uso oftalmológico. Este instrumento faz incidir no fundo do olho humano um feixe luminoso de baixa potência e amostra, por meio do método de Hartmann, as frentes de onda da luz espalhada. A partir dos dados coletados, a forma das frentes de onda são reconstituídas e as aberrações eventualmente existentes no olho são calculadas e representadas por intermédio dos polinômios de Zernike. Aqui são expostos os fundamentos deste método, algumas das suas propriedades e limitações. Também é mostrada a caracterização funcional do protótipo desenvolvido, testando-o com elementos ópticos de propriedades conhecidas
This work describes the steps involved in the aberroscope prototype development for ophthalmological use. This instrument injects inside the human eye a low power light beam and sample, by Hartmann method, the wavefronts produced by ocular fundus light scattering. From collected data, the wavefront shape is reconstructed and the eye aberrations that eventually existent are calculated and adjusted by Zernike polynomials. Are discussed the method foundations, some of properties and limitations. Also the functional characterization of the developed prototype is shown, by testing it with optical elements of known properties
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Shack- Hartmann Sensor"

1

de Lima Monteiro, D. W., O. Akhzar-Mehr y G. Vdovin. "Prime Microlens Arrays for Hartmann-Shack Sensors: An Economical Fabrication Technology". En Adaptive Optics for Industry and Medicine, 197–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-28867-8_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nirmaier, T., G. Pudasaini, C. Alvarez Diez, J. Bille y D. W. de Lima Monteiro. "Single-Chip Neural Network Modal Wavefront Reconstruction for Hartmann-Shack Wavefront Sensors". En Adaptive Optics for Industry and Medicine, 151–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-28867-8_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Li, Chaohong, Hao Xian, Wenhan Jiang y Changhui Rao. "Measurement Error of Shack-Hartmann Wavefront Sensor". En Topics in Adaptive Optics. InTech, 2012. http://dx.doi.org/10.5772/29430.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vyas, Akondi, M. B. y B. Raghavendra. "Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor". En Topics in Adaptive Optics. InTech, 2012. http://dx.doi.org/10.5772/29884.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Basden, Alastair. "Shack–Hartmann Wavefront Sensors". En The WSPC Handbook of Astronomical Instrumentation, 171–85. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811203787_0009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Shack- Hartmann Sensor"

1

Seifert, Lars, Jan Liesener y Hans J. Tiziani. "Adaptive Shack-Hartmann sensor". En Optical Metrology, editado por Wolfgang Osten, Malgorzata Kujawinska y Katherine Creath. SPIE, 2003. http://dx.doi.org/10.1117/12.499543.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lukin, V. P., N. N. Botugina, O. N. Emaleev, N. P. Krivolutskiy y L. N. Lavrinova. "Shack-Hartmann sensor software". En Optical Design and Engineering III. SPIE, 2008. http://dx.doi.org/10.1117/12.797588.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Podanchuk, Dmytro V., Volodymyr P. Dan'ko y Myhailo M. Kotov. "Holographic Shack-Hartmann wavefront sensor". En 2010 International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2010. http://dx.doi.org/10.1109/caol.2010.5634208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Molebny, Vasyl V. "Scanning Shack-Hartmann wavefront sensor". En Defense and Security, editado por Gary W. Kamerman. SPIE, 2004. http://dx.doi.org/10.1117/12.541755.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tuohy, Simon y Adrian Gh Podoleanu. "Coherence-gated Shack-Hartmann wavefront sensor". En Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fmk4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chen, Kai, Zeping Yang, Haiying Wang, Ende Li, Fan Yang y Yudong Zhang. "PSD-based Shack-Hartmann wavefront sensor". En Photonics Asia 2004, editado por Wenhan Jiang y Yoshiji Suzuki. SPIE, 2004. http://dx.doi.org/10.1117/12.575025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kudryashov, Alexis, Vadim Samarkin, Alex Alexandrov, Julia Sheldakova y Valentina Zavalova. "Shack-Hartmann wavefront sensor - advantages and disadvantages". En 2010 International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2010. http://dx.doi.org/10.1109/caol.2010.5634259.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cao, Genrui y Xin Yu. "Study on the Hartmann-Shack wavefront sensor". En San Diego '92, editado por Robert E. Fischer y Warren J. Smith. SPIE, 1992. http://dx.doi.org/10.1117/12.130729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Hongru, Guoying Feng, Jianfei Sun, Thomas Bourgade, Shouhuan Zhou y Anand Asundi. "Wavefront subaperture stitching with Shack-Hartmann sensor". En International Conference on Optical and Photonic Engineering (icOPEN2015), editado por Anand K. Asundi y Yu Fu. SPIE, 2015. http://dx.doi.org/10.1117/12.2189452.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Heinisch, J., I. Scheele, A. K. Ruprecht y S. Krey. "Aspheric lens tester with shack-hartmann sensor". En Optifab 2007. SPIE, 2007. http://dx.doi.org/10.1117/12.719736.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía