Literatura académica sobre el tema "Slow-fast systems"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Slow-fast systems".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Slow-fast systems"

1

Omelchenko, I., M. Rosenblum y A. Pikovsky. "Synchronization of slow-fast systems". European Physical Journal Special Topics 191, n.º 1 (diciembre de 2010): 3–14. http://dx.doi.org/10.1140/epjst/e2010-01338-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

da Silva, Paulo R. y Jaime R. de Moraes. "Piecewise-Smooth Slow–Fast Systems". Journal of Dynamical and Control Systems 27, n.º 1 (4 de marzo de 2020): 67–85. http://dx.doi.org/10.1007/s10883-020-09480-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rossetto, Bruno, Thierry Lenzini, Sofiane Ramdani y Gilles Suchey. "Slow-Fast Autonomous Dynamical Systems". International Journal of Bifurcation and Chaos 08, n.º 11 (noviembre de 1998): 2135–45. http://dx.doi.org/10.1142/s0218127498001765.

Texto completo
Resumen
In this paper, we consider a class of slow-fast autonomous dynamical systems, i.e. systems having a small parameter ∊ multiplying a component of velocity. At first, the singular perturbation method (∊ = 0+) is recalled. Then we consider the case ∊ ≠ 0. Starting from a working hypothesis and particularly in the case of a singular approximation, our purpose is to show that there exists slow manifolds which can be defined as the slow manifolds of a so-called tangent linear system. The method allowed us to plot the slow manifold and to go further into the qualitative study and the geometric characterization of attractors. As an example, we give the explicit slow manifold equation of the van der Pol limit cycle. The value of the parameter corresponding to bifurcations is computed. Other third order systems are also treated. The method is extended to dynamical systems with no small parameter, and, therefore, which have no singular approximations, but have at least one real and negative eigenvalue in a large domain. It is numerically shown from the Lorenz model and from a laser model that there exists slow manifolds which can be defined as the slow manifods of a so-called tangent linear system, as in the previous cases. The implicit equation of these slow manifolds has been calculated too.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ginoux, Jean-Marc. "Slow Invariant Manifolds of Slow–Fast Dynamical Systems". International Journal of Bifurcation and Chaos 31, n.º 07 (15 de junio de 2021): 2150112. http://dx.doi.org/10.1142/s0218127421501121.

Texto completo
Resumen
Slow–fast dynamical systems, i.e. singularly or nonsingularly perturbed dynamical systems possess slow invariant manifolds on which trajectories evolve slowly. Since the last century various methods have been developed for approximating their equations. This paper aims, on the one hand, to propose a classification of the most important of them into two great categories: singular perturbation-based methods and curvature-based methods, and on the other hand, to prove the equivalence between any methods belonging to the same category and between the two categories. Then, a deep analysis and comparison between each of these methods enable to state the efficiency of the Flow Curvature Method which is exemplified with paradigmatic Van der Pol singularly perturbed dynamical system and Lorenz slow–fast dynamical system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Brännström, N. y V. Gelfreich. "Drift of slow variables in slow-fast Hamiltonian systems". Physica D: Nonlinear Phenomena 237, n.º 22 (noviembre de 2008): 2913–21. http://dx.doi.org/10.1016/j.physd.2008.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

NYE, V. A. "An Analysis of Fast-Slow Systems". IMA Journal of Mathematical Control and Information 2, n.º 4 (1985): 295–317. http://dx.doi.org/10.1093/imamci/2.4.295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kasthuri, Praveen, Induja Pavithran, Abin Krishnan, Samadhan A. Pawar, R. I. Sujith, Rohan Gejji, William Anderson, Norbert Marwan y Jürgen Kurths. "Recurrence analysis of slow–fast systems". Chaos: An Interdisciplinary Journal of Nonlinear Science 30, n.º 6 (junio de 2020): 063152. http://dx.doi.org/10.1063/1.5144630.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bouchet, Freddy, Tobias Grafke, Tomás Tangarife y Eric Vanden-Eijnden. "Large Deviations in Fast–Slow Systems". Journal of Statistical Physics 162, n.º 4 (21 de enero de 2016): 793–812. http://dx.doi.org/10.1007/s10955-016-1449-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rinaldi, Sergio y Alessandra Gragnani. "Destabilizing factors in slow–fast systems". Ecological Modelling 180, n.º 4 (diciembre de 2004): 445–60. http://dx.doi.org/10.1016/j.ecolmodel.2003.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Llibre, Jaume, Paulo R. da Silva y Marco A. Teixeira. "Sliding Vector Fields via Slow--Fast Systems". Bulletin of the Belgian Mathematical Society - Simon Stevin 15, n.º 5 (noviembre de 2008): 851–69. http://dx.doi.org/10.36045/bbms/1228486412.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Slow-fast systems"

1

Walton, Piers Benedict. "Exponential asymptotics in slow-fast systems". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620628.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Desroches, Mathieu. "Numerical continuation methos for slow-fast dynamical systems". Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Walter, Jessika. "Averaging for diffusive fast-slow systems with metastability in the fast variable". [S.l.] : [s.n.], 2005. http://www.diss.fu-berlin.de/2006/628/index.html.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shchetinina, Ekaterina. "Integral manifolds for nonautonomous slow fast systems without dichotomy". Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972647600.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Su, Tan. "Accuracy of perturbation theory for slow-fast Hamiltonian systems". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13334.

Texto completo
Resumen
There are many problems that lead to analysis of dynamical systems with phase variables of two types, slow and fast ones. Such systems are called slow-fast systems. The dynamics of such systems is usually described by means of different versions of perturbation theory. Many questions about accuracy of this description are still open. The difficulties are related to presence of resonances. The goal of the proposed thesis is to establish some estimates of the accuracy of the perturbation theory for slow-fast systems in the presence of resonances. We consider slow-fast Hamiltonian systems and study an accuracy of one of the methods of perturbation theory: the averaging method. In this thesis, we start with the case of slow-fast Hamiltonian systems with two degrees of freedom. One degree of freedom corresponds to fast variables, and the other degree of freedom corresponds to slow variables. Action variable of fast sub-system is an adiabatic invariant of the problem. Let this adiabatic invariant have limiting values along trajectories as time tends to plus and minus infinity. The difference of these two limits for a trajectory is known to be exponentially small in analytic systems. We obtain an exponent in this estimate. To this end, by means of iso-energetic reduction and canonical transformations in complexified phase space, we reduce the problem to the case of one and a half degrees of freedom, where the exponent is known. We then consider a quasi-linear Hamiltonian system with one and a half degrees of freedom. The Hamiltonian of this system differs by a small, ~ε, perturbing term from the Hamiltonian of a linear oscillatory system. We consider passage through a resonance: the frequency of the latter system slowly changes with time and passes through 0. The speed of this passage is of order of ε. We provide asymptotic formulas that describe effects of passage through a resonance with an improved accuracy O(ε3/2). A numerical verification is also provided. The problem under consideration is a model problem that describes passage through an isolated resonance in multi-frequency quasi-linear Hamiltonian systems. We also discuss a resonant phenomenon of scattering on resonances associated with discretisation arising in a numerical solving of systems with one rotating phase. Numerical integration of ODEs by standard numerical methods reduces continuous time problems to discrete time problems. For arbitrarily small time step of a numerical method, discrete time problems have intrinsic properties that are absent in continuous time problems. As a result, numerical solution of an ODE may demonstrate dynamical phenomena that are absent in the original ODE. We show that numerical integration of systems with one fast rotating phase leads to a situation of such kind: numerical solution demonstrates phenomenon of scattering on resonances, that is absent in the original system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kosiuk, Ilona. "Relaxation oscillations in slow-fast systems beyond the standard form". Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-100566.

Texto completo
Resumen
Relaxation oscillations are highly non-linear oscillations, which appear to feature many important biological phenomena such as heartbeat, neuronal activity, and population cycles of predator-prey type. They are characterized by repeated switching of slow and fast motions and occur naturally in singularly perturbed ordinary differential equations, which exhibit dynamics on different time scales. Traditionally, slow-fast systems and the related oscillatory phenomena -- such as relaxation oscillations -- have been studied by the method of the matched asymptotic expansions, techniques from non-standard analysis, and recently a more qualitative approach known as geometric singular perturbation theory. It turns out that relaxation oscillations can be found in a more general setting; in particular, in slow-fast systems, which are not written in the standard form. Systems in which separation into slow and fast variables is not given a priori, arise frequently in applications. Many of these systems include additionally various parameters of different orders of magnitude and complicated (non-polynomial) non-linearities. This poses several mathematical challenges, since the application of singular perturbation arguments is not at all straightforward. For that reason most of such systems have been studied only numerically guided by phase-space analysis arguments or analyzed in a rather non-rigorous way. It turns out that the main idea of singular perturbation approach can also be applied in such non-standard cases. This thesis is concerned with the application of concepts from geometric singular perturbation theory and geometric desingularization based on the blow-up method to the study of relaxation oscillations in slow-fast systems beyond the standard form. A detailed geometric analysis of oscillatory mechanisms in three mathematical models describing biochemical processes is presented. In all the three cases the aim is to detect the presence of an isolated periodic movement represented by a limit cycle. By using geometric arguments from the perspective of dynamical systems theory and geometric desingularization based on the blow-up method analytic proofs of the existence of limit cycles in the models are provided. This work shows -- in the context of non-trivial applications -- that the geometric approach, in particular the blow-up method, is valuable for the understanding of the dynamics of systems with no explicit splitting into slow and fast variables, and for systems depending singularly on several parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Weicker, Lionel. "Slow-fast oscillations of delayed feedback systems: theory and experiment". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209242.

Texto completo
Resumen
Dans ce travail, nous étudions deux types de problèmes à retard. Le premier traite des oscillateurs optoélectroniques (OOEs). Un OOE est un système bouclé permettant de délivrer une onde électromagnétique radio-fréquence de grande pureté spectrale et de faible bruit électronique. Le second problème traite du couplage retardé de neurones. Une nouvelle forme de synchronisation est observée où un régime oscillant est une alternative à un état stationnaire stable. Ces deux problèmes présentent des oscillations de type slow-fast. Une grande partie de ma thèse est dévouée à l’analyse de ces régimes. Etant donné qu’il s’agit d’équations nonlinéaires à retard, les techniques asymptotiques classiques ont dû être revues. En plus d’une étude théorique, des expériences ont été effectuées. Le travail sur les OOEs a été rendu possible grâce aux invitations respectives de L. Larger dans son laboratoire à l’Université de Franche-Comté et de D.J. Gauthier à Duke University. Le travail sur le couplage de neurones a bénéficié d’expériences réalisées par L. Keuninckx du groupe « Applied Physics » de la Vrije Universiteit Brussel.

Une contribution importante de cette thèse est à la fois l’analyse mathématique mais aussi l’observation expérimentale d’ondes carrées stables asymétriques présentant des longueurs de plateau différentes mais ayant la même période dans un OOE. Une bifurcation de Hopf primaire d’un état stationnaire est le mécanisme menant à ces régimes. Un deuxième phénomène qui a été à la fois observé pour l’OOE et pour les neurones couplés est la coexistence entre plusieurs ondes carrées ayant des périodes différentes. Pour l’OOE, ces oscillations peuvent être reliées à plusieurs bifurcations de Hopf primaires qui sont proches les unes des autres à cause du grand délai. Le mécanisme de stabilité est similaire à celui de "Eckhaus" pour les systèmes spatialement étendus. Pour le couplage de cellules excitables, nous avons étudié des équations couplées de type FitzHugh-Nagumo (FHN) linéaires par morceaux et obtenu des résultats analytiques. Nous montrons que le mécanisme menant à ces régimes périodiques correspond à un point limite d’un cycle-limite. La robustesse de ces régimes par rapport au bruit a ensuite été explorée expérimentalement en utilisant des circuits électroniques couplés et retardés. Ce système peut être modélisé mathématiquement par les mêmes équations de type FHN. Pour terminer, nous montrons que les équations pour l’OOE et le FHN possèdent des propriétés similaires. Ceci nous permet de généraliser nos principaux résultats à une plus grande variété d’équations différentielles à retard.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Maharajh, Nirupa. "Effect of Feed Rate and Solid Retention Time (SRT) on Effluent Quality and Sludge Characteristics in Activated Sludge Systems Using Sequencing Batch Reactors". Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36107.

Texto completo
Resumen
A critical element to the successful operation of activated sludge systems is efficient solid liquid separation achieved by bioflocculation. Bioflocculation refers to the process of microbial aggregation to form activated sludge flocs, dependent on the interaction of exocellular polymeric substances (EPS) to form the matrix that holds microbes, other organics and inorganic particles in a flocculent mass. Numerous factors affect bioflocculation; two key parameters are the Solid Retention Time (SRT) and the substrate loading rate. The latter is related to the two basic designs in activated sludge bioreactor configurations: the Plug Flow Reactor (PFR) and the Completely Stirred Tank Reactor (CSTR). PFR systems have a high substrate loading rate, whereas CSTRs have a low substrate loading rate. Research has shown that the PFR configurations produce better sludge quality, in terms of settleability and dewaterability, and subsequently better effluent quality than CSTR systems. In this experiment, the effect of SRT and substrate loading rate on activated sludge was investigated using bench scale SBRs. PFR and CSTR configurations were simulated by adjusting the fill period to be shorter or longer respectively. A series of SBRs were operated, each with an operating volume of 6L, to obtain data for PFR (fast feed) versus CSTR (slow feed) configurations at 10 Day, 5 Day and 2 Day SRTs. Effluent quality was monitored by measuring effluent TSS, VSS, total and soluble COD and soluble biopolymers. Sludge quality was monitored for the aerobic phase by measuring total and suspended solids, total and suspended volatile solids, Sludge Volume Index (SVI), Capillary Suction Time (CST) and Zeta Potential. Anaerobic digestibility was measured for the sludge produced in these systems by measuring gas production, similar to estimating biogenic methane potential (BMP) and determining short term odor productions, specifically Total Volatile Organic Sulfur Compounds (TVOSCs). As expected the change in feeding pattern and SRTs affected the effluent and sludge quality during the aerobic operation phase. Effluent quality was found to be better for the fast feed system at all SRTs, with all monitored parameters being of similar or significantly lower concentration than for the slow feed system. In terms of sludge quality, the fast feed system was found to retain more of its biomass in solution, indicating better flocculation and settleability in this system. COD was given a lower rank as an effluent quality indicator, since the 5 Day and 2 Day SRT datasets did not correlate well with other datasets, specifically effluent TSS and biopolymers. The data was included because it is believed that the trends were accurate representations of fast versus slow feed system behavior. The trends were comparable to those of effluent TSS and solution biopolymer datasets. In terms of anaerobic digestion potential, the fast feed sludge exhibited greater volumetric gas production per gram of solid at the 5 and 2 Day SRTs. Gas production was similar for both systems at the 10 Day SRT. Total and Volatile Solid reduction were however found to be higher for the slow feed sludge than for the fast feed. This may indicate higher gas and potential odor production per gram of solid degraded for the fast feed sludge. This theory is supported by the odor analyses, which revealed that the fast feed sludge had a higher TVOSC production at each SRT. This was related to the higher protein content of the sludge, indicated by the effluent biopolymers being much higher in protein content than carbohydrates. Shearing, which is part of the solids handling process at most plants, releases these proteins and makes them bioavailable, allowing them to be oxidized to produce TVOSCs and hence higher odors. In conclusion it was found that the fast feed effluent and sludge quality appeared to be overall better at each SRT simulated; the higher TVOSC content may indicate a problem with solids handling, but research has shown that these can be overcome with the addition of iron. Additionally, both systems, the fast and slow feed systems operated better at longer SRTs, with the fast feed system performing better in all cases. The difference was not completely significant in all cases and this is attributed to being a by-product of operating at the optimal M:D salt ratio. This project has strength in terms of its potential for large scale applications. SRT is the considered the most important design parameter and one of the more complicated parameters to manipulate due to its widespread effect on reactor behavior, specifically sludge and effluent quality. Additionally, the fast feed versus slow feed concept is one that has been gaining significant interest, since bioreactor configuration impacts the effluent and sludge quality. Feed configurations have been investigated more frequently within the past decade. The novel approach taken by this project is that it combines these two parameters, both of which are important to large scale plants, both industrial and municipal.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mergia, Woinshet D. "Robust computational methods to simulate slow-fast dynamical systems governed by predator-prey models". University of the Western Cape, 2019. http://hdl.handle.net/11394/7070.

Texto completo
Resumen
Philosophiae Doctor - PhD
Numerical approximations of multiscale problems of important applications in ecology are investigated. One of the class of models considered in this work are singularly perturbed (slow-fast) predator-prey systems which are characterized by the presence of a very small positive parameter representing the separation of time-scales between the fast and slow dynamics. Solution of such problems involve multiple scale phenomenon characterized by repeated switching of slow and fast motions, referred to as relaxationoscillations, which are typically challenging to approximate numerically. Granted with a priori knowledge, various time-stepping methods are developed within the framework of partitioning the full problem into fast and slow components, and then numerically treating each component differently according to their time-scales. Nonlinearities that arise as a result of the application of the implicit parts of such schemes are treated by using iterative algorithms, which are known for their superlinear convergence, such as the Jacobian-Free Newton-Krylov (JFNK) and the Anderson’s Acceleration (AA) fixed point methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kosiuk, Ilona [Verfasser], Juergen [Akademischer Betreuer] Jost, Juergen [Gutachter] Jost y Freddy [Gutachter] Dumortier. "Relaxation oscillations in slow-fast systems beyond the standard form / Ilona Kosiuk ; Gutachter: Juergen Jost, Freddy Dumortier ; Betreuer: Juergen Jost". Leipzig : Universitätsbibliothek Leipzig, 2013. http://d-nb.info/1238241174/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Slow-fast systems"

1

Holford, Patrick. The Holford low GL diet: Lose fat fast using the revolutionary slow carb system. New York: Atria Books, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Noise-Induced Phenomena in Slow-Fast Dynamical Systems. London: Springer-Verlag, 2006. http://dx.doi.org/10.1007/1-84628-186-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Extended Abstracts Summer 2016 : Slow-Fast Systems and Hysteresis: Theory and Applications. Birkhäuser, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gann, Kyle. When Slow Starts to Mean Something, We Crave Fast. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252035494.003.0003.

Texto completo
Resumen
This chapter describes what Ashley refers to as “the glorious chaos of the 1960's,” tracing the rise and fall of the ONCE festivals as well as the various compositions he had worked on at the time, particularly his 1967 piece, That Morning Thing. Not only is it Ashley's most ambitious piece for the ONCE festival and the direct predecessor of Perfect Lives (1979), it is the source of two of his best-known early works after The Wolfman (1964) and of two of his first works to be commercially recorded. In addition, the chapter illustrates how the ONCE festival represented a kind of crunching together of serialism and conceptualism with a characteristically Midwestern disregard for consistency or ideology. Pieces based on intricate systems were common, as were pieces based on verbal instructions, the two techniques cross-fading into each other.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach (Probability and its Applications). Springer, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Musa Sarica, Umut Sami Yamak y Mehmet Akif Boz. Effect of production systems on foot pad dermatitis (FPD) levels among slow-, medium- and fast-growing broilers. Verlag Eugen Ulmer, 2014. http://dx.doi.org/10.1399/eps.2014.52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

United States. National Aeronautics and Space Administration., ed. Weightlessness simulation: Physiological changes in fast and slow muscle. Nashville, Tenn: Vanderbilt University, School of Medicine, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

L, Iversen Leslie, Goodman E. C y Neuroscience Research Centre (Merck Sharp & Dohme), eds. Fast and slow chemical signalling in the nervous system. Oxford: Oxford University Press, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mann, Peter. Autonomous Geometrical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0022.

Texto completo
Resumen
This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tiwari, Sandip. Electromechanics and its devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0005.

Texto completo
Resumen
Electromechanics—coupling of mechanical forces with others—exhibits a continuum-to-discrete spectrum of properties. In this chapter, classical and newer analysis techniques are developed for devices ranging from inertial sensors to scanning probes to quantify limits and sensitivities. Mechanical response, energy storage, transduction and dynamic characteristics of various devices are analyzed. The Lagrangian approach is developed for multidomain analysis and to bring out nonlinearity. The approach is extended to nanoscale fluidic systems where nonlinearities, fluctuation effects and the classical-quantum boundary is quite central. This leads to the study of measurement limits using power spectrum and, correlations with slow and fast forces. After a diversion to acoustic waves and piezoelectric phenomena, nonlinearities are explored in depth: homogeneous and forced conditions of excitation, chaos, bifurcations and other consequences, Melnikov analysis and the classic phase portaiture. The chapter ends with comments on multiphysics such as of nanotube-based systems and electromechanobiological biomotor systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Slow-fast systems"

1

Lei, Jinzhi. "Slow-Fast Dynamics". En Encyclopedia of Systems Biology, 1955–56. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Witelski, Thomas y Mark Bowen. "Fast/slow Dynamical Systems". En Methods of Mathematical Modelling, 201–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23042-9_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Slemrod, Marshall. "Averaging of Fast-Slow Systems". En Lecture Notes in Computational Science and Engineering, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14941-2_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kuehn, Christian. "Chaos in Fast-Slow Systems". En Applied Mathematical Sciences, 431–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12316-5_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Walloth, Christian. "Emergent Systems: Nested, Fast, and Slow". En Understanding Complex Systems, 13–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27550-5_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Goertzel, Zarathustra A., Karel Chvalovský, Jan Jakubův, Miroslav Olšák y Josef Urban. "Fast and Slow Enigmas and Parental Guidance". En Frontiers of Combining Systems, 173–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86205-3_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Shin, Cliff y Joyce Thomas. "Exploring Two Design Processes: Slow and Fast". En Advances in Intelligent Systems and Computing, 3–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60495-4_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Andersson, Åke E. "Fast and Slow Processes of Economic Evolution". En Lecture Notes in Economics and Mathematical Systems, 62–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48808-5_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rossetto, B. "Singular approximation of chaotic slow-fast dynamical systems". En The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function, 12–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17894-5_306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Harrison, David W. "Fast Energetic “Happy-Go-Lucky” and Slow “Cautious” Response Styles". En Brain Asymmetry and Neural Systems, 455–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13069-9_27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Slow-fast systems"

1

Shumakher, E., N. Orbach, A. Nevet, D. Dahan y G. Eisenstein. "Quantification of signal distortion in Brillouin scattering based slow light systems". En Slow and Fast Light. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/sl.2006.tub2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zadok, Avi, Sanghoon Chin, Elad Zilka, Avishay Eyal, Luc Thévenaz y Moshe Tur. "Polarization Dependent Pulse Distortion in Stimulated Brillouin Scattering Slow Light Systems". En Slow and Fast Light. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/sl.2009.pdpc1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chin, Sanghoon y Luc Thévenaz. "Simplified Brillouin fiber slow light systems in loss regime using step current modulation". En Slow and Fast Light. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sl.2011.slwb4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rinkleff, R. H., L. Spani Molella, A. Rocco, A. Wicht y K. Danzmann. "Experimental Comparison between the Index of Refraction in Strongly Driven and Degenerate Two-Level Systems". En Slow and Fast Light. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/sl.2008.jmb24.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shumakher, E., A. Willinger y G. Eisenstein. "Fundamental Limits and Recent Advances in Slow and Fast Light Systems Based on Optical Parametric Processes in Fibers". En Slow and Fast Light. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/sl.2007.swa1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Livne, Ariel, Gil Cohen y Jay Fineberg. "Fast Fracture in Slow Motion". En ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59132.

Texto completo
Resumen
We present recent results of fracture experiments in polyacrylamide gels. Polyacrylamide gels are soft polymer materials in which the characteristic sound speeds are on the order of a few meters/sec — thereby slowing down fracture dynamics by 3 orders of magnitude. We first demonstrate the universality of rapid fracture dynamics, comparing dynamics observed in gels with those seen in “classic” brittle materials such as glass. Among the common features are the appearance and form of branching instabilities as well as characteristic attributes of the resulting fracture surface that provide evidence for crack front inertia when translational invariance along the front is broken. We then demonstrate a number wholly new aspects of the fracture process, whose study is only made possible by utilizing the “slow motion” inherent in the fracture of these materials. These include both a new oscillatory instability at about 90% of the Rayleigh wave speed and measurements of the nonlinear zone at the tip of dynamic cracks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

OKA, HIROE. "CONLEY INDEX THEORY FOR SLOW-FAST SYSTEMS: MULTI-DIMENSIONAL SLOW MANIFOLD". En Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

LIVERANI, CARLANGELO. "TRANSPORT IN PARTIALLY HYPERBOLIC FAST-SLOW SYSTEMS". En International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0154.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Taylor, D. G. "Slow and fast manifolds of singularly perturbed systems". En 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Buono, Pietro-Luciano, Alain Vinet y Jacques Bélair. "Bifurcation analysis of symmetrically coupled fast∕slow systems". En INTERNATIONAL CONFERENCE ON APPLICATIONS IN NONLINEAR DYNAMICS (ICAND 2010). AIP, 2011. http://dx.doi.org/10.1063/1.3574859.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía