Literatura académica sobre el tema "Solaire Thermodynamique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Solaire Thermodynamique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Solaire Thermodynamique"
Caille, Frédéric. "L’énergie solaire thermodynamique en Afrique". Afrique contemporaine 261-262, n.º 1 (2017): 65. http://dx.doi.org/10.3917/afco.261.0065.
Texto completoFAYE, Kory, Ababacar THIAM y Mactar FAYE. "Modélisation thermodynamique du fonctionnement d’une micro-turbine à gaz solaire de 10 kWe destinée à la production d’énergie électrique décentralisée en zone sahélienne". Journal de Physique de la SOAPHYS 1, n.º 1 (30 de diciembre de 2019): C2019A3–1—C2019A3–6. http://dx.doi.org/10.46411/jpsoaphys.19.01.003.
Texto completoWohrer, Michel. "Sophia Antipolis Energie Développement : un nouveau type de Centrales Solaires Thermodynamiques". Annales des Mines - Réalités industrielles Novembre 2009, n.º 4 (2009): 74. http://dx.doi.org/10.3917/rindu.094.0074.
Texto completoSerpa, Nilo. "Sur l'Entropie Contrôlée des Systèmes: Transformations de la Matière Condensée (On the Controlled Entropy of the Systems: Condensed Matter Transformations)". CALIBRE - Revista Brasiliense de Engenharia e Física Aplicada 3 (17 de junio de 2018). http://dx.doi.org/10.17648/calibre.v3i.372x.
Texto completoTesis sobre el tema "Solaire Thermodynamique"
Rahmani, Mustapha Amine. "Gestion de l'énergie d'une micro-centrale solaire thermodynamique". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT077/document.
Texto completoThis Ph.D thesis was prepared in the scope of the MICROSOL project, ledby Schneider Electric, that aims at developing Off-grid solar thermodynamic micro powerplants exploiting the solar thermal energy. The aim of this thesis being the development of innovative and efficient control strategies for the energy management of two kinds of solar thermodynamic micro power plants: based on Stirling engine and based and Organic RankineCycle (ORC) machines.In a first part, we consider the Stirling based solar thermodynamic micro power planthybridized with a supercapacitor as an energy buffer. Within this framework, we propose afirst experimentally validated control strategy, associated to the energy conversion system ofthe Stirling engine, that endows the system with quasi optimal performances in term of settlingtime enabling the size reduction of the supercapacitor. A second control strategy that handlesexplicitly the system constraints while providing the system with optimal performances interm of settling time , is also proposed. This control strategy is in fact more than a simplecontroller, it is a control framework that holds for a family of energy conversion systems.In a second part, we consider the Organic Rankine Cycle (ORC) based thermodynamicmicro power plant hybridized with a battery bank as an energy buffer. Since this system worksat constant speed for the asynchronous generator electrically connected to a commercial energyconversion system, we propose a model predictive controller that acts on the thermodynamicpart of this system to move from an operating point to another, during the load power demandtransients, as fast as possible (to reduce the size of the battery banks) while respecting thephysical system constraints. The developed predictive controller is based upon a dynamicmodel, for the ORC power plant, identified experimentally thanks to an adequate nonlinearidentification algorithm
Martins, Matthieu. "Nouveau procédé thermo-hydraulique appliqué au rafraîchissement solaire de l’habitat : analyse et optimisation thermodynamiques". Perpignan, 2010. http://www.theses.fr/2010PERP1020.
Texto completoIn recent years, efforts were made in developing environmental-friendly technologies. Cooling systems are one of the most apparent applications of this source of renewable energy. Indeed the use of solar energy for air conditioning allows synchronization between cooling needs and solar energy availability. This paper presents a novel solar cooling process (so-called CHV3T) using common flat plate collectors. Firstly, the performances of the process are evaluated throughout an energy balance in steady state. A modeling of the whole process is developed by using the concept of equivalent Gibbs systems to describe the dynamic behavior of all the components of the system. The main objective of the modeling is to provide a design tool for this thermal-hydraulic system. A 6 kW cooling capacity prototype coupled to 20 m² of flat plate solar collectors has been realized
Mathieu, Antoine. "Contribution à la conception et à l'optimisation thermodynamique d'une microcentrale solaire thermo-électrique". Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0027/document.
Texto completoAs a new millenium begins, 1.4 Billion people worldwide earn less than 2 dollars daily and have no access to the power grid. The need of electric power of these people represent small energy amounts but is very important regarding to the usage : acces to healthcare and education, communication, local economic development. In reponse to the situation, since 2009, Schneider Electric Industries takes up the challenge to design and realize micro solar power plants, competitive with other solutions, to supply these people with reliable and environment-friendly electricity. Dealing with this project, this work has been realized under contract, so it follows the development sequence of the industrial project. The first part is a State of the Art of the actual solar thermodynamical technologies. This task is extended to a qualitative evaluation of various technologies, as a contribution to select adapted technologies: concentrating solar thermal receivers, sensible heat thermal storage and Stirling engine. The secon step is a preliminary thermodynamics analysis of the whole system, that allowed to evaluate key features: the size of the solar receivers area, the thermal storage volume, and overall energy performance. This task is streched by a sensitivity analysis of the sizing and performances, according to various energy losses parameters, that shows the technical hard spots of the design. Finally, an exergy-based dynamical analysis of stationary operating solar receivers and Stirling engines leads to a propostion of basis methods and criteria for the optimal control of power, in order to maximize the energy performances of the system and to enhance its competitiveness
ANDRIEUX, FRANCK. "Etude de la conversion thermodynamique de l'energie solaire a vocation spatiale". Paris, ENMP, 1990. http://www.theses.fr/1990ENMP0240.
Texto completoDelaleux, Fabien. "Intensification des performances des procédés énergétiques par hybridation solaire/géothermie". Perpignan, 2011. http://www.theses.fr/2011PERP1086.
Texto completoThe theme of the manuscript is to imagine processes combining solar and geothermal energies to improve their respective performances. Hybridization can be made from the not concentrated solar systems to the concentrated solar systems with a phase of intensification of the performances of vertical boreholes heat exchangers to move from a level to another. The first chapter deals with the coupling between geothermal and not concentrated solar energy. The aim of this part is to study the possibility of storing thermal energy produced by a solar field in the basement through borehole heat exchangers. The second part focuses on the intensification of heat transfer in low temperature geothermal energy. Different doping tests of bentonite are tested and compared. The third and last chapter is entitled coupling of geothermal and concentrated solar energy. This part joins in the context of solar thermodynamics power plants which have to resolve the double problem concerning their overall efficiency which can be improved and an important water consumption for their cooling
Di, Giacomo Laurie. "PACVD/PVD de multicouches sélectives pour la conversion thermodynamique de l'énergie solaire". Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0042.
Texto completoIn concentrated solar power (CSP) plants, solar flux is concentrated on receivers to heat a transfer fluid up to 600°C. In order to improve their optical properties, these receivers can be covered by multilayered spectrally selective coatings. This work is devoted to designing and developing innovative spectrally selective structures showing strong absorption (low reflectivity) in the visible and near infrared range and low emissivity (high reflectivity) in the infrared range. We developed such stacks associating a refractory metal with high IR reflectivity and a ceramic which improves absorption in the visible range and thermal stability. The coatings were synthesized by plasma techniques, combining PACVD and PVD. Pre-industrial process feasibility, its development and optimization through the design of an innovative reactor, layer deposition and characterization, their combination in efficient optically selective stacks and the study of their aging have been achieved
Calvet, Nicolas. "Stockages thermiques performants et durables pour procédés solaires : des basses aux hautes températures". Perpignan, 2010. http://www.theses.fr/2010PERP0002.
Texto completoTouré, Abdou. "Etude théorique et expérimentale d'un moteur Ericsson à cycle de Joule pour conversion thermodynamique de l’énergie solaire ou pour micro-cogénération". Pau, 2010. http://www.theses.fr/2010PAUU3012.
Texto completoAn Ericsson engine is an external heat supply engine working according to a Joule thermodynamic cycle. Such engines have separated compression and expansion cylinders, a recuperator, and a monophasic gaseous working fluid. First of all, in this thesis we have developed an original theoretical model of a volumetric hot air Joule cycle engine. The theoretical results are presented and analyzed. Then, we have tested a prototype of the 'hot' part of an open cycle Ericsson engine developed by our laboratory. Experimental results for the ‘engine mode’ and the ‘driven engine mode’ are presented and analyzed. The performances of the prototype are in agreement with previous modeling results and assumptions. Therefore it has been decided to build and add the compression part to the prototype so that to allow the test of a complete Ericsson engine
Khennich, Mohammed. "Optimisation thermodynamique d’un procédé solaire utilisant un système de réfrigération à éjecto-compression pour la production du froid". Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9756.
Texto completoEspargilliere, Harold. "Système de refroidissement sec et de production d'eau pour centrale électrosolaire thermodynamique à cycle de Rankine". Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0004.
Texto completoIndustrial concentrated solar power plants consume 4 m3/MWh of water to cool down their thermodynamic cycle. In arid area, it could induce conflicts of use on a more fundamental resource than electricity. This fact highlights the need to develop alternatives dry cooling technologies but equally effective. The solar field represents 50% of the investment cost of a CSP plant to be used only daily for the heat production needed for the thermodynamic cycle. The approach of the project is to use this huge area as macro-heat exchanger with its surrounding environment through a coupled heat transfer with the ambient air (convective) and with outer space at 3K (radiative). After validating the compatibility of solar field materials for a such application, these research works has shown experimentally that in addition to extract the waste heat of the thermodynamic cycle, it could also produce cold by night radiative cooling. An innovative alternative solution for cooling CSP plants offering two new features to their already existing solar field for the benefit of its paying off
Libros sobre el tema "Solaire Thermodynamique"
Capítulos de libros sobre el tema "Solaire Thermodynamique"
"18 - LE SOLAIRE THERMODYNAMIQUE". En L'énergie de demain, 371–400. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0129-9-019.
Texto completo"18 - LE SOLAIRE THERMODYNAMIQUE". En L'énergie de demain, 371–400. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0129-9.c019.
Texto completo