Literatura académica sobre el tema "Solid Rocket Motors"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Solid Rocket Motors".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Solid Rocket Motors"
Abdelraouf, A. M., O. K. Mahmoud y M. A. Al-Sanabawy. "Thrust termination of solid rocket motor". Journal of Physics: Conference Series 2299, n.º 1 (1 de julio de 2022): 012018. http://dx.doi.org/10.1088/1742-6596/2299/1/012018.
Texto completoSchonberg, W. P. "Energy partitioning in high speed impact of analogue solid rocket motors". Aeronautical Journal 103, n.º 1029 (noviembre de 1999): 519–28. http://dx.doi.org/10.1017/s0001924000064277.
Texto completoKessler, D. J. "Explorer 46 Meteoroid Bumper Experiment: Earth Orbital Debris Interpretation". International Astronomical Union Colloquium 85 (1985): 97. http://dx.doi.org/10.1017/s0252921100084414.
Texto completoJadhav, Shruti Dipak, Tapas Kumar Nag, Atri Bandyopadhyay y Raghvendra Pratap Singh. "Experimental and Computational Investigation of Sounding Solid Rocket Motor". 3 1, n.º 3 (1 de diciembre de 2022): 29–38. http://dx.doi.org/10.46632/jame/1/3/5.
Texto completoNagappa, R., M. R. Kurup y A. E. Muthunayagam. "ISRO's solid rocket motors". Acta Astronautica 19, n.º 8 (agosto de 1989): 681–97. http://dx.doi.org/10.1016/0094-5765(89)90136-7.
Texto completoSerrano, Dario Donrey. "Applications of Optimization Techniques for Solid Rocket Design". Highlights in Science, Engineering and Technology 38 (16 de marzo de 2023): 716–24. http://dx.doi.org/10.54097/hset.v38i.5936.
Texto completoMuhammed, Safna K. y Prof Indu Susan Raj. "A Review on the Influence of Test Bed Dynamic Characteristics on Thrust measured during Static Fire Testing of Solid Rocket Motor case". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de mayo de 2023): 505–8. http://dx.doi.org/10.22214/ijraset.2023.51564.
Texto completoKitinirunkul, Thirapat, Prakob Kitchaiya, Chesda Kiriratnikom, Paisarn Boonyarat y Suchuchchai Nuanklai. "Effect of Antimony Trioxide and Carbon Black on the Mechanical Properties and Ablation Properties of Liner Insulation in Rocket Motors". Key Engineering Materials 877 (febrero de 2021): 108–13. http://dx.doi.org/10.4028/www.scientific.net/kem.877.108.
Texto completoViganò, Davide, Adriano Annovazzi y Filippo Maggi. "Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model". International Journal of Aerospace Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/3765796.
Texto completoWang, Zhuopu, Wenchao Zhang y Yuanzhe Liu. "A Phenomenological Model for the Unsteady Combustion of Solid Propellants from a Zel’dovich-Novzhilov Approach". Aerospace 10, n.º 9 (29 de agosto de 2023): 767. http://dx.doi.org/10.3390/aerospace10090767.
Texto completoTesis sobre el tema "Solid Rocket Motors"
Hovland, Douglas Lyle. "Particle sizing in solid rocket motors". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26153.
Texto completoSolid propellant rocket engines
Light scattering
Theses
McCrorie, J. David. "Particle behavior in solid propellant rocket motors and plumes". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24002.
Texto completoPuskulcu, Gokay. "Analysis Of 3-d Grain Burnback Of Solid Propellant Rocket Motors And Verification With Rocket Motor Tests". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605270/index.pdf.
Texto completoMatta, Lawrence Mark. "Investigation of the flow turning loss in unstable solid propellant rocket motors". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15938.
Texto completoRomano, Federico. "Q1D unsteady ballistic model for solid rocket motors performance prediction". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoYakin, Bülent. "Combustor and nozzle effects on particulate behavior in solid rocket motors /". Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277304.
Texto completoYakin, Bulent. "Combustor and nozzle effects on particulate behavior in solid rocket motors". Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/39764.
Texto completoAn investigation was conducted using a subscale solid rocket motor to measure the effect of nozzle residence time on the behavior of Al203 particles to assess the applicability of subscale motor data to full-scale motors and to measure the effects of nozzle entrance particle size distribution on the slag accumulated with submerged nozzles. Although particles as large as 140 micrometers were present at the nozzle entrance, most of the particulate mass was contained in much smaller particles. This observation is in good agreement with the small mass that accumulated above the submerged nozzle. It was found that both particle breakup and collision coalescence occurred across the exhaust nozzle, with a significant increase in the mass fraction of small (<2 micrometers) particles. Increasing the nozzle residence time enhanced particle breakup but did not affect the maximum plume particle size. Thus, full-scale motors are expected to have a higher percentage of mass in particles less than 2 micrometers than subscale motors but with similar diameters of the largest particles.
Mini, Stefano <1991>. "Analysis of the main phenomena affecting solid rocket motors internal ballistics". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9878/1/PhD_Thesis.pdf.
Texto completoHasanoglu, Mehmet Sinan. "Storage Reliability Analysis Of Solid Rocket Propellants". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609897/index.pdf.
Texto completoVernacchia, Matthew T. "Development of low-thrust solid rocket motors for small, fast aircraft propulsion". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127069.
Texto completoCataloged from the official PDF of thesis.
Includes bibliographical references (pages 281-289).
Small, uncrewed aerial vehicles (UAVs) are expanding the capabilities of aircraft systems. However, a gap exists in the size and capability of aircraft: no small aircraft are capable of sustained fast flight. A small, fast aircraft requires a propulsion system which is both miniature and high-power, requirements which current UAV propulsion technologies do not meet. Solid propellant rocket motors could be used, but must be re-engineered to operate at much lower thrust and for much longer burn times than conventional small solid rocket motors. This imposes unique demands on the motor and propellant. This work investigates technological challenges of small, low-thrust solid rocket motors: slow-burn solid propellants, motors which have low thrust relative to their size (and thus have low chamber pressure), thermal protection for the motor case, and small nozzles which can withstand long burn times.
Slow-burn propellants were developed using ammonium perchlorate oxidizer and the burn rate suppressant oxamide. By varying the amount of oxamide (from 0-20%), burn rates from 4mms⁻¹ to 1mms⁻¹ (at 1MPa) were achieved. Using these propellants, a low-thrust motor successfully operated at a (thrust / burn area) ratio 10 times less than that of typical solid rocket motors. This motor can provide 5-10N of thrust for 1-3 minutes. An ablative thermal protection liner was tested in these firings. Despite the long burn time, only a few millimeters of ablative are needed. A new ceramic-insulated nozzle was demonstrated on this motor. The nozzle has a small throat diameter (only a few millimeters) and can operate in thermal steady-state. Models were developed for the propellant burn rate, motor design, heat transfer within the motor and nozzle, and for thermal stresses in the nozzle insulation.
This work shows that small, low-thrust solid motors are feasible, by demonstrating these key technologies in a prototype motor. Further, the experimental results and models will enable engineers to design and predict the performance of solid rocket motors for small, fast aircraft. By providing insight into the physics of these motors, this thesis may help to enable a new option for aircraft propulsion.
by Matthew T. Vernacchia.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Libros sobre el tema "Solid Rocket Motors"
North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Design methods in solid rocket motors. Neuilly sur Seine, France: AGARD, 1988.
Buscar texto completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Design Methods in Solid Rocket Motors. S.l: s.n, 1987.
Buscar texto completoHovland, Douglas Lyle. Particle sizing in solid rocket motors. Monterey, California: Naval Postgraduate School, 1989.
Buscar texto completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Propulsion and Energetics Panel. y North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Consultant and Exchange Programme., eds. Design methods in solid rocket motors. Neuilly sur Seine, France: North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, 1987.
Buscar texto completoLanghenry, M. T. Acceleration effects in solid propellant rocket motors. New York: AIAA, 1986.
Buscar texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. Fluidic Nozzle Throats in Solid Rocket Motors. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6.
Texto completoL, Derr Ronald y North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development., eds. Hazard studies for solid propellant rocket motors. Neuilly-sur-Seine, France: AGARD, 1990.
Buscar texto completoNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Hazard studies for solid propellant rocket motors. Neuilly-sur-Seine: AGARD, 1990.
Buscar texto completoMcCrorie, J. David. Particle behavior in solid propellant rocket motors and plumes. Monterey, Calif: Naval Postgraduate School, 1992.
Buscar texto completoGreatrix, David R. A study of combustion and flow behaviour in solid-propellant rocket motors. [Downsview, Ont.]: [Institute for Aerospace Studies], 1987.
Buscar texto completoCapítulos de libros sobre el tema "Solid Rocket Motors"
Greatrix, David R. "Solid-Propellant Rocket Motors". En Powered Flight, 323–79. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2485-6_10.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Erosion Characteristics of Fluidic Throat in Solid-Rocket Motors". En Fluidic Nozzle Throats in Solid Rocket Motors, 183–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_8.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Thrust Modulation Process of Fluidic Throat for Solid Rocket Motors". En Fluidic Nozzle Throats in Solid Rocket Motors, 171–82. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_7.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Introduction". En Fluidic Nozzle Throats in Solid Rocket Motors, 1–19. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_1.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "System Application Modes and Key Technologies". En Fluidic Nozzle Throats in Solid Rocket Motors, 207–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_10.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Steady Characteristics of a Gas–Gas Aerodynamic Throat". En Fluidic Nozzle Throats in Solid Rocket Motors, 21–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_2.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "The Characteristic Function and Nozzle Efficiency". En Fluidic Nozzle Throats in Solid Rocket Motors, 53–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_3.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "The Fluidic Throat in Gas–Particle Two-Phase Flow Conditions". En Fluidic Nozzle Throats in Solid Rocket Motors, 69–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_4.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Secondary Flow TVC for Fluidic-Throat Nozzles". En Fluidic Nozzle Throats in Solid Rocket Motors, 95–133. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_5.
Texto completoXie, Kan, Xinmin Chen, Junwei Li y Yu Liu. "Gas–Liquid Fluidic Throat". En Fluidic Nozzle Throats in Solid Rocket Motors, 135–69. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6439-6_6.
Texto completoActas de conferencias sobre el tema "Solid Rocket Motors"
DELANNOY, GUY. "Computation of performance for different solid rocket motors - Conventional motors, nozzleless rocket motors, rocket ramjets". En 24th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3046.
Texto completoMACBETH, A. "Refurbishment of the Space Shuttle redesigned solid rocket motors - The first reusable solid rocket motors". En 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2403.
Texto completoCourta, A. "Vortex shedding in solid rocket motors". En 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-727.
Texto completoParsons, I., P. Alavilli, A. Namazifard, A. Acharya, X. Jiao y R. Fiedler. "Coupled simulations of solid rocket motors". En 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-3456.
Texto completoGuery, J., F. Godfroy, S. Ballereau, S. Gallier, P. Della Pieta, O. Orlandi, Eric Robert y Nathalie Cesco. "Thrust Oscillations in Solid Rocket Motors". En 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4979.
Texto completoGAUNT, D. "Understanding costs of solid rocket motors". En 22nd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1638.
Texto completoGoyal, Vinay, Jacob Rome y Patrick Schubel. "Structural Analysis of Solid Rocket Motors". En 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-2110.
Gallier, Stany, Emmanuel Radenac y Franck Godfroy. "Thermoacoustic Instabilities in Solid Rocket Motors". En 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5252.
Texto completoHILBING, J. y S. HEISTER. "Radial slot flows in solid rocket motors". En 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-2309.
Texto completoZgheib, Nadim y Joseph Majdalani. "Axial Waves in Simulated Solid Rocket Motors". En 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6993.
Texto completoInformes sobre el tema "Solid Rocket Motors"
Lhota, J. R., G. C. Panos, E. C. Johnson y M. C. Gregory. Ultrasonic Backscatter Technique for Corrosion Detection in Solid Rocket Motors. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1994. http://dx.doi.org/10.21236/ada307597.
Texto completoNAVAL WEAPONS CENTER CHINA LAKE CA. Measured Temperatures of Solid Rocket Motors Dump Stored in the Tropics and Desert. Part 4. Tropics. Fort Belvoir, VA: Defense Technical Information Center, julio de 1989. http://dx.doi.org/10.21236/ada213425.
Texto completoKo, Malcolm, Run-Lie Shia, Debra Weisenstein, Jose Rodriguez y Nien-Dak Sze. Global Stratospheric Impact of Solid Rocket Motor Launchers. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada413823.
Texto completoChelner, Herbert. Embedded Sensor Technology for Solid Rocket Motor Health Monitoring. Fort Belvoir, VA: Defense Technical Information Center, julio de 2002. http://dx.doi.org/10.21236/ada405070.
Texto completoChelner, Herbert. Embedded Sensor Technology for Solid Rocket Motor Health Monitoring. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2003. http://dx.doi.org/10.21236/ada412607.
Texto completoReaugh, J., E. Lee y J. Maienschein. The Production of Airblast From Solid Rocket Motor Fallbacks. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1053686.
Texto completoAguilo Valentin, Miguel Alejandro, Steven W. Bova y David R. Noble. Solid Rocket Motor Design using a Low-Dimensional Fluid Model. Office of Scientific and Technical Information (OSTI), febrero de 2019. http://dx.doi.org/10.2172/1496883.
Texto completoHyde, R. S. A Solid Rocket Motor Manufacturer's View of Sensors and Aging Surveillance. Fort Belvoir, VA: Defense Technical Information Center, junio de 2002. http://dx.doi.org/10.21236/ada406078.
Texto completoKoo, J. H., O. A. Ezekoye, M. C. Bruns y J. C. Lee. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2009. http://dx.doi.org/10.21236/ada564427.
Texto completoKoo, J. H. y O. D. Ezekoye. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2006. http://dx.doi.org/10.21236/ada589776.
Texto completo