Literatura académica sobre el tema "Spinal cord Locomotion"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Spinal cord Locomotion".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Spinal cord Locomotion"
Gerasimenko, Yury, Chet Preston, Hui Zhong, Roland R. Roy, V. Reggie Edgerton y Prithvi K. Shah. "Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat". Journal of Neurophysiology 122, n.º 2 (1 de agosto de 2019): 585–600. http://dx.doi.org/10.1152/jn.00810.2018.
Texto completoRossignol, S., G. Barrière, O. Alluin y A. Frigon. "Re-expression of Locomotor Function After Partial Spinal Cord Injury". Physiology 24, n.º 2 (abril de 2009): 127–39. http://dx.doi.org/10.1152/physiol.00042.2008.
Texto completoRossignol, S., E. Brustein, L. Bouyer, D. Barthélemy, C. Langlet y H. Leblond. "Adaptive changes of locomotion after central and peripheral lesions". Canadian Journal of Physiology and Pharmacology 82, n.º 8-9 (1 de julio de 2004): 617–27. http://dx.doi.org/10.1139/y04-068.
Texto completoHuang, A., B. R. Noga, P. A. Carr, B. Fedirchuk y L. M. Jordan. "Spinal Cholinergic Neurons Activated During Locomotion: Localization and Electrophysiological Characterization". Journal of Neurophysiology 83, n.º 6 (1 de junio de 2000): 3537–47. http://dx.doi.org/10.1152/jn.2000.83.6.3537.
Texto completoLiu, Jun, Turgay Akay, Peter B. Hedlund, Keir G. Pearson y Larry M. Jordan. "Spinal 5-HT7 Receptors Are Critical for Alternating Activity During Locomotion: In Vitro Neonatal and In Vivo Adult Studies Using 5-HT7 Receptor Knockout Mice". Journal of Neurophysiology 102, n.º 1 (julio de 2009): 337–48. http://dx.doi.org/10.1152/jn.91239.2008.
Texto completoTresch, Matthew C. y Ole Kiehn. "Population Reconstruction of the Locomotor Cycle From Interneuron Activity in the Mammalian Spinal Cord". Journal of Neurophysiology 83, n.º 4 (1 de abril de 2000): 1972–78. http://dx.doi.org/10.1152/jn.2000.83.4.1972.
Texto completoChen, Yi, Lu Chen, Rongliang Liu, Yu Wang, Xiang Yang Chen y Jonathan R. Wolpaw. "Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury". Journal of Neurophysiology 111, n.º 6 (15 de marzo de 2014): 1249–58. http://dx.doi.org/10.1152/jn.00756.2013.
Texto completoChen, Yi, Lu Chen, Yu Wang, Jonathan R. Wolpaw y Xiang Yang Chen. "Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats". Journal of Neurophysiology 112, n.º 10 (15 de noviembre de 2014): 2374–81. http://dx.doi.org/10.1152/jn.00422.2014.
Texto completoMinassian, Karen, Ursula S. Hofstoetter, Florin Dzeladini, Pierre A. Guertin y Auke Ijspeert. "The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?" Neuroscientist 23, n.º 6 (28 de marzo de 2017): 649–63. http://dx.doi.org/10.1177/1073858417699790.
Texto completoFrigon, Alain y Serge Rossignol. "Locomotor and Reflex Adaptation After Partial Denervation of Ankle Extensors in Chronic Spinal Cats". Journal of Neurophysiology 100, n.º 3 (septiembre de 2008): 1513–22. http://dx.doi.org/10.1152/jn.90321.2008.
Texto completoTesis sobre el tema "Spinal cord Locomotion"
Chen, Yi. "Re-educating the injured spinal cord by operant conditioning of a reflex pathway". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1147873519.
Texto completoRestrepo, Arboleda Carlos Ernesto. "Neurotransmitter phenotypes of neurons in the spinal cord and their functional role in the mouse locomotor network". Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-833-4/.
Texto completoThota, Anil Kumar. "NEUROMECHANICAL CONTROL OF LOCOMOTION IN INTACT AND INCOMPLETE SPINAL CORD INJURED RATS". UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/195.
Texto completoBulea, Thomas Campbell. "A Variable Impedance Hybrid Neuroprosthesis for Enhanced Locomotion after Spinal Cord Injury". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333564164.
Texto completoKnafo, Steven. "Sensorimotor integration in the moving spinal cord". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066559/document.
Texto completoThere is converging evidence that mechanosensory feedback modulates the activity of spinal central pattern generators underlying vertebrate locomotion. However, probing the underlying circuits in behaving animals is not possible in “fictive” locomotion electrophysiological recordings. Here, we achieve selective and non-invasive monitoring of spinal motor and sensory neurons during active locomotion by genetically targeting the bioluminescent sensor GFP-Aequorin in larval zebrafish. Using GCaMP imaging of individual neurons, we confirm that bioluminescence signals reflect the differential recruitment of motor pools during motion. Their significant reduction in paralyzed animals and immotile mutants demonstrates that mechanosensory feedback enhances the recruitment of spinal motor neurons during active locomotion. Accordingly, we show that spinal mechanosensory neurons are recruited in moving animals and that their silencing impairs escapes in freely behaving larvae. Altogether, these results shed light on the contribution of mechanosensory feedback to motor output and the resulting differences between active and fictive locomotion
Wikström, Martin. "Dopaminergic and serotonergic modulation of cellular and locomotor network properties in the lamprey spinal cord /". Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3731-1/.
Texto completoHagevik, André. "Brainstem and spinal cord mechanisms that control locomotor activity in larval lamprey /". free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842533.
Texto completoPerry, Sharn. "Deciphering the Locomotor Network : The Role of Spinal Cord Interneurons". Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305601.
Texto completoPomfret, David. "Differences in Aerobic Response to Wheelchair Locomotion". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/299.
Texto completoHansen, Christopher Nelson. "REMOTE DISRUPTION OF FUNCTION, PLASTICITY, AND LEARNING IN LOCOMOTOR NETWORKS AFTER SPINAL CORD INJURY". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385716231.
Texto completoLibros sobre el tema "Spinal cord Locomotion"
IBRO Symposium (1991 Paris, France). Muscle afferents and spinal control of movement. Oxford: Pergamon Press, 1992.
Buscar texto completoSpinal locomotion: A new approach to human neurophysiology and treatment in spinal cord lesion. [Bratislava?: Slovak Academy of Science?, 1996.
Buscar texto completoStecina, Katinka, Kristine C. Cowley, Claire Francesca Meehan, Michelle Maria Rank y Michael A. Lane, eds. Propriospinal Neurons: Essential Elements in Locomotion, Autonomic Function and Plasticity after Spinal Cord Injury and Disease. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-916-5.
Texto completoD, Binder Marc, ed. Peripheral and spinal mechanisms in the neural control of movement. Amsterdam: Elsevier, 1999.
Buscar texto completoTsai, Eve Chung. Mechanisms of locomotor recovery after spinal cord repair with peripheral nerves, fibroblast growth factor 1, and fibrin glue after complete spinal cord transection in the adult mammal. 2004.
Buscar texto completoBiewener, Andrew A. y Shelia N. Patek, eds. Neuromuscular Control of Movement. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198743156.003.0008.
Texto completo(Editor), T. Kumazawa, L. Kruger (Editor) y K. Mizumura (Editor), eds. The Polymodal Receptor - A Gateway to Pathological Pain (Progress in Brain Research). Elsevier Science, 1996.
Buscar texto completoTakao, Kumazawa, Kruger Lawrence y Mizumura Kazue, eds. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Spinal cord Locomotion"
Burke, Robert E. y J. W. Fleshman. "Strategies to Identify Interneurons Involved in Locomotor Pattern Generation in the Mammalian Spinal Cord". En Neurobiology of Vertebrate Locomotion, 245–67. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_17.
Texto completoBuchanan, James T. "Premotor Interneurons in the Lamprey Spinal Cord: Morphology, Synaptic Interactions and Activities during Fictive Swimming". En Neurobiology of Vertebrate Locomotion, 321–33. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_21.
Texto completoShevtsova, Natalia A., Khaldoun Hamade, Samit Chakrabarty, Sergey N. Markin, Boris I. Prilutsky y Ilya A. Rybak. "Modeling the Organization of Spinal Cord Neural Circuits Controlling Two-Joint Muscles". En Neuromechanical Modeling of Posture and Locomotion, 121–62. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3267-2_5.
Texto completoGrillner, Sten. "The Effect of L-DOPA on the Spinal Cord — Relation to Locomotion and the Half Center Hypothesis". En Neurobiology of Vertebrate Locomotion, 269–77. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_18.
Texto completoAlam, Monzurul y Jufang He. "Cortically Controlled Electrical Stimulation for Locomotion of the Spinal Cord Injured". En Converging Clinical and Engineering Research on Neurorehabilitation, 35–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34546-3_6.
Texto completoOgata, Toru, Noritaka Kawashima, Kimitaka Nakazawa y Masami Akai. "Reconstruction and Tuning of Neural Circuits for Locomotion After Spinal Cord Injury". En Clinical Systems Neuroscience, 139–48. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55037-2_8.
Texto completoWild, Klaus y G. A. Brunelli. "Restoration of locomotion in paraplegics with aid of autologous bypass grafts for direct neurotisation of muscles by upper motor neurons — the future: surgery of the spinal cord?" En Neurosurgical Re-Engineering of the Damaged Brain and Spinal Cord, 107–12. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6081-7_23.
Texto completoFrigon, Alain, Yann Thibaudier, Marie-France Hurteau, Alessandro Telonio, Charline Dambreville y Victoria Kuczynski. "The Control of Interlimb Coordination during Left-Right and Transverse Split-Belt Locomotion in Intact and Spinal Cord-Injured Cats". En Biosystems & Biorobotics, 29–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08072-7_7.
Texto completoBouyer, Laurent y Serge Rossignol. "Spinal Cord Plasticity Associated with Locomotor Compensation to Peripheral Nerve Lesions in the Cat". En Spinal Cord Plasticity, 207–24. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1437-4_9.
Texto completoCazalets, Jean-René. "Organization of the Spinal Locomotor Network in Neonatal Rat". En Neurobiology of Spinal Cord Injury, 89–111. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-200-5_4.
Texto completoActas de conferencias sobre el tema "Spinal cord Locomotion"
Gad, Parag, Jonathan Woodbridge, Igor Lavrov, Yury Gerasimenko, Hui Zhong, Roland R. Roy, Majid Sarrafzadeh y V. Reggie Edgerton. "Using Forelimb EMG to Control an Electronic Spinal Bridge to Facilitate Hindlimb Stepping After Complete Spinal Cord Lesion". En ASME 2011 6th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/biomed2011-66037.
Texto completoAnderson, I., E. Parkinson, B. Scroggins, J. B. Walker y M. Morse. "FES for joint stabilization during stance phase of locomotion in spinal cord injured". En Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94708.
Texto completoGranat, M. H., A. C. Smith, G. F. Phillips, C. A. Kirkwood, R. W. Barnett y B. J. Andrews. "Characterization of the electrically excited flexion withdrawal response used in restoration of locomotion in spinal cord injured paraplegics". En Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94897.
Texto completoWang, Ping, K. H. Low y Adela Tow. "Effects of body-weight support locomotion training (BWSLT) on EMG activation in healthy and spinal cord injury (SCI) subjects". En 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2010. http://dx.doi.org/10.1109/robio.2010.5723339.
Texto completoSullivan, Sarah R., Noshir A. Langrana y Sue Ann Sisto. "Multibody Computational Biomechanical Model of the Upper Body". En ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84809.
Texto completoUchida, Hiroaki, Kenzo Nonami, Yoshihiko Iguchi, Huang Qing Jiu y Takaaki Yanai. "Partial Model Based Walking Control of Quadruped Locomotion Robot With Self Renovation Control Function". En ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/movic-8432.
Texto completoThapa, Saroj, Hao Zheng, Geza F. Kogler y Xiangrong Shen. "A Robotic Knee Orthosis for Sit-to-Stand Assistance". En ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9891.
Texto completoPatel, Harsh, Wing Kin Chung, Vimal Viswanathan y Sohail Zaidi. "Design and Testing of a Physical Therapy Device Controlled With Voice Commands". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23887.
Texto completoCheng, Y. T., S. L. Ness, S. H. Hu, J. Raikin, L. D. Pan, T. Wang, D. G. Ouzounov et al. "In-Vivo Three-Photon Excited Fluorescence Imaging in the Spinal Cord of Awake, Locomoting Mouse". En Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.jth2a.183.
Texto completoMirbagheri, M. M., X. Niu, D. Varoqui y M. Kindig. "Prediction of gait recovery as a tool to rationalize locomotor training in spinal cord injury". En 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012). IEEE, 2012. http://dx.doi.org/10.1109/biorob.2012.6290707.
Texto completoInformes sobre el tema "Spinal cord Locomotion"
Guertin, Pierre y Mario Vaillancourt. Tritherapy (Spinalon)-Elicited Spinal Locomotor Network Activation: Phase I-IIa Clinical Trial in Spinal Cord-Injured Patients. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada617388.
Texto completoGorman, Peter, Paula Geigle y Keith Tansey. A Comparison of Robotic, Body Weight-Supported Locomotor Training and Aquatic Therapy in Chronic Motor Incomplete Spinal Cord Injury Subject. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada570537.
Texto completoGorman, Peter y Paula Geigle. A Comparison of Robotic, Body Weight-Supported Locomotor Training and Aquatic Therapy in Chronic Motor Incomplete Spinal Cord Injury Subject. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada594822.
Texto completo