Literatura académica sobre el tema "Steel Slag"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Steel Slag".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Steel Slag"
Zhang, Kaitian, Jianhua Liu y Heng Cui. "Investigation on the Slag-Steel Reaction of Mold Fluxes Used for Casting Al-TRIP Steel". Metals 9, n.º 4 (1 de abril de 2019): 398. http://dx.doi.org/10.3390/met9040398.
Texto completoZhao, Shuo, Zushu Li, Renze Xu, Darbaz Khasraw, Gaoyang Song y Dong Xu. "Dissolution Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags". Metals 11, n.º 11 (9 de noviembre de 2021): 1801. http://dx.doi.org/10.3390/met11111801.
Texto completoLiu, Chengsong, Xiaoqin Liu, Xiaoliu Yang, Hua Zhang y Ming Zhong. "Kinetics of MgO Reduction in CaO-Al2O3-MgO Slag by Al in Liquid Fe". Metals 9, n.º 9 (10 de septiembre de 2019): 998. http://dx.doi.org/10.3390/met9090998.
Texto completoLiao, Jie Long, Zhao Hui Zhang, Jian Tao Ju y Fu Cai Zhao. "Comparative Analysis of Steel Slag Characteristics and Treatment Process". Advanced Materials Research 834-836 (octubre de 2013): 378–84. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.378.
Texto completoZhao, Qiang, Lang Pang y Dengquan Wang. "Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review". Materials 15, n.º 11 (26 de mayo de 2022): 3803. http://dx.doi.org/10.3390/ma15113803.
Texto completoXu, Haiqin, Shaopeng Wu, Hechuan Li, Yuechao Zhao y Yang Lv. "Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes". Materials 13, n.º 4 (17 de febrero de 2020): 889. http://dx.doi.org/10.3390/ma13040889.
Texto completoMichelic, S. K. y C. Bernhard. "Experimental Study on the Behavior of TiN and Ti2O3 Inclusions in Contact with CaO‐Al2O3‐SiO2‐MgO Slags". Scanning 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/2326750.
Texto completoLiu, Yu, Zhao Zhang, Guangqiang Li, Yang Wu, Xijie Wang y Baokuan Li. "Effect of SiO2 containing slag for electroslag remelting on inclusion modification of 42CrMo steel". Metallurgical Research & Technology 116, n.º 6 (2019): 627. http://dx.doi.org/10.1051/metal/2019063.
Texto completoRen, Zhengyi y Dongsheng Li. "Application of Steel Slag as an Aggregate in Concrete Production: A Review". Materials 16, n.º 17 (25 de agosto de 2023): 5841. http://dx.doi.org/10.3390/ma16175841.
Texto completoSocha, L., K. Michalek, J. Bažan, K. Gryc, P. Machovčák, A. Opler y P. Styrnal. "Evaluation of Influence of Briquetted Synthetic Slags on Slag Regime and Process of Steel Desulphurization". Archives of Metallurgy and Materials 59, n.º 2 (1 de junio de 2014): 809–13. http://dx.doi.org/10.2478/amm-2014-0138.
Texto completoTesis sobre el tema "Steel Slag"
Berryman, Eleanor. "Carbonation of steel slag". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110434.
Texto completoL'industrie du fer et de l'acier est en pleine croissance et sa production mondiale a augmenté de 65% au cours des dix dernières années (World Steel Association, 2012). Malheureusement, elle est également responsable d'un quart des émissions industrielles de CO2 ce qui en fait la plus importante source industrielle de CO2 atmosphérique (International Energy Agency (IEA), 2007).La carbonatation minérale fournit une méthode robuste pour la séquestration permanente du CO2 sous une forme écologiquement inerte. La larnite (Ca2SiO4), constituant principal des scories d'acier, réagit aisément avec le CO2 aqueux (Santos et al., 2009). Par conséquent, sa carbonatation offre une importante occasion de réduire à la source les émissions de CO2. Un avantage potentiel supplémentaire de ce traitement est de rendre les scories d'acier convenables pour le recyclage. Cette étude examine l'impact de la température, le flux molaire surfacique du fluide carbonaté, et d'un gradient de réaction sur la dissolution et la carbonatation des scories d'acier. Elle s'inscrit dans une étude plus large visant à déterminer les conditions optimisant la conversion de la larnite, et d'autres silicates de calcium, à la calcite.Des expériences ont été menées sur des grains de scories d'acier d'un diamètre de 2 à 3 mm fournis par Tata Steel RD&T. Un mélange de CO2-H2O a été pompé à travers un réacteur continu contenant ces grains et maintenu à une température entre 120°C et 200°C, une pression de 250 bar et à des flux molaires surfaciques de 0.8 à 6 mmol/cm2min. Chaque expérience a duré de 3 à 7 jours. Le fluide CO2-H2O a réagi avec les grains de scories d'acier et a formé des minéraux de carbonate de calcium contenant du phosphore. À flux molaire surfacique élevé, soit 6 mL/cm2min, ces phases sont dissoutes aux bords des grains, laissant place à une bordure poreuse d'oxydes d'aluminum et de fer. Une augmentation de la température a augmenté la vitesse de cette réaction. A valeur intermédaire de flux molaire surfacique, 0.8 mL/cm2min, le degré de carbonatation a augmenté. Au lieu laisser des bordures poreuses d'oxydes, les minéraux de calcium primaires en marge des grains ont plutôt été remplacés par des phases de calcium carbonate contenant du phosphore. En plus, l'usage d'un réacteur plus long a créé un gradient de réaction et maintenu la supersaturation du fluide relative au carbonate de calcium qui a enrobé les grains. Les scories d'acier exposées au fluide dans un réacteur discontinu (sans flux de fluide) ont été moins carbonatées; la dissolution non-congruente de la scorie a pris place suivie par l'enrobage des grains de scories par le carbonate, et ce dernier a réduit la surface de réaction de la scorie avec le fluide.Les résultats de cette étude démontrent que la carbonatation par le CO2 aqueux des scories d'acier à granulométrie relativement grossière est possible et qu'elle peut être optimisée en variant le flux molaire surfacique du fluide. Les expériences de ce type contribueront à la réduction éventuelle des émissions industrielles globales de CO2.
Kombathula, Sushanth. "Sequestration of carbon dioxide in steel slag". Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280716.
Texto completoÄven om järn- och stålindustrin är avgörande för samhällets utveckling, är industrin ansvarigför en stor del av koldioxidutsläppen. Industrin producerar också biprodukter som metallurgisk slagg i order på miljoner ton. Slaggen är alkalisk till sin natur och rik på Ca- och Mg-oxider. Vid användning interagerar oxiden med atmosfärisk CO2 och bildar karbonater, vilket gör dem instabila. Att lagra koldioxid i slaggen skulle göra den mer stabil, förbättra livscykeln och främja ytterligare användning i olika applikationer. CO2-bindning kan göras genom kolsyrning av stålslagg. Kolsyrning av slagg kan uppnås genom direkt och indirekt karbonatisering. Direkt karbonatisering utförs antingen i ett gasformigt eller vattenhaltigt tillstånd i ett enda steg. Indirekt kolsyrning involverar flera steg eftersom den aktiverar Ca/Mg-jonerna i slaggen innan de interagerar med CO2. För en industriell process skulle den direkta vägen vara mer livskraftig eftersom den innebär mindre steg, lättare att skala upp. Eftersom det inte finns några lösningsmedel för att aktivera Ca/Mg är kostnaden också mindre. Denna avhandling fokuserar på att utveckla en industriell process för att binda koldioxid i metallurgisk slagg. Sekvestrering genom en kombination av gasformig och vattenhaltig har försökt under undersökning av effekten av kolsyratid, kolsyratemperatur och form av den använda slaggen. Kolsyringen av slaggen utförs med CO2 och ånga. Resultaten visar att karbonatiseringsutbytet ökar med kolsyratiden och minskar med temperaturökningen. Effekten av formen på slagg som användes för karbonatisering studerades genom att utföra karbonatiseringstest i en slaggpellet. Diffusion spelar en viktig roll i karbonatiseringsprocessen. Pulveriserad slagg visade högre karbonatiseringsutbyte jämfört med pelleten. CO2-upptag så högt som 53 g CO2/kg slagg vid 200 oC under 6 timmar har uppnåtts. Resultaten indikerar möjligheten för en industriell karbonatiseringsprocess.
Skagerkvist, Mio. "Adsorption of anionic elements to steel slag". Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-71048.
Texto completoJansson, Sune. "A study on molten steel/slag/refractory reactions during ladle steel refining". Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-312.
Texto completoKjellqvist, Lina. "Studies of Steel/Slag Equilibria using Computational Thermodynamics". Licentiate thesis, Stockholm Stockholm : Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3914.
Texto completoHolloway, Mark. "Corrosion of steel reinforcement in slag-based concrete". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365811.
Texto completoEkengård, Johan. "Slag/Metal Metallurgy in Iron and Steel Melts". Doctoral thesis, KTH, Tillämpad processmetallurgi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187228.
Texto completoQC 20160518
Patel, Jigar P. "Broader Use of Steel Slag Aggregates in Concrete". Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1229627352.
Texto completoOty, Uchenna Victor. "Steel slag leachates : environmental risks and metal recovery opportunities". Thesis, University of Hull, 2015. http://hydra.hull.ac.uk/resources/hull:13632.
Texto completoWang, George Chenggong. "Properties and utilization of steel slag in engineering applications". Online version, 1992. http://bibpurl.oclc.org/web/23804.
Texto completoLibros sobre el tema "Steel Slag"
United States. Bureau of Mines y Generic Mineral Technology Center for Pyrometallurgy (U.S.), eds. Kinetics of metal/slag/gas reactions. [Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Buscar texto completoJiang, Min y Xinhua Wang. Slag-Steel Reaction and Control of Inclusions in Al Deoxidized Special Steel. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3463-6.
Texto completoIppolitovich, Baptizmanskiĭ Vadim y Isaev E. I, eds. Razlivka stali sverkhu s primeneniem shlakovykh smeseĭ. Kiev: "Tekhnika", 1987.
Buscar texto completoWalker, David I. Ultrasonic detection of slag carryover during steel transfer operations. Ottawa: National Library of Canada, 1990.
Buscar texto completoHunt, Liz. Steel slag in hot mix asphalt concrete: Final report. Salem, Or: Research Group, Oregon Dept. of Transportation, 2000.
Buscar texto completoMcIntosh, Synthia N. Recovery of manganese from steel plant slag by carbamate leaching. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Buscar texto completoMcIntosh, Synthia N. Recovery of manganese from steel plant slag by carbamate leaching. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Buscar texto completoOntario. Ministry of the Environment. Slag disposal site investigation at Algoma Steel Corporation: volume 1. Toronto: Queen's Printer for Ontario, 1992.
Buscar texto completoW, Elger G., ed. Utilization of scrap preheating and substitute slag conditioners for electric arc furnace steelmaking. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Buscar texto completoLovejoy, Steven C. A fitness-for-purpose evaluation of electro-slag flange butt welds: Final report. Salem, OR: Oregon Dept. of Transportation, Research Group, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Steel Slag"
He, Mingsheng, Bowen Li, Wangzhi Zhou, Huasheng Chen, Meng Liu y Long Zou. "Preparation and Characteristics of Steel Slag Ceramics from Converter Slag". En The Minerals, Metals & Materials Series, 13–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_2.
Texto completoKumar, Ankit, Sumon Saha y Rana Chattaraj. "Soft Clay Stabilization with Steel Slag". En Recent Developments in Sustainable Infrastructure, 141–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4577-1_11.
Texto completoHan, Fenglan y Laner Wu. "Comprehensive Utilization Technology of Steel Slag". En Industrial Solid Waste Recycling in Western China, 305–56. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8086-0_6.
Texto completoEremenko, Yu I. y D. A. Poleshchenko. "Slag Cut-off During Steel Casting". En Lecture Notes in Mechanical Engineering, 983–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_104.
Texto completoParron, Maria Eugenia, Maria Dolores Rubio Cintas, Miguel José Oliveira, Elisa M. J. Silva, Francisca Pérez García y Jose Manuel Garcia-Manrique. "Steel Waste Valorisation - Steel Slag Waste Effect on Concrete Shrinkage". En INCREaSE 2019, 826–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30938-1_64.
Texto completoHang, Nguyen Thi Thuy, Nguyen Xuan Khanh y Tran Van Tieng. "Discrete Element Modeling of Steel Slag Concrete". En Advances in Engineering Research and Application, 284–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04792-4_38.
Texto completoDubey, Anant Aishwarya, K. Ravi, Rituraj Devrani, Sudhanshu Rathore y Annesh Borthakur. "Characterization of Steel Slag as Geo-material". En Lecture Notes in Civil Engineering, 113–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_9.
Texto completoLiu, Li, Qianwen Liu, Yongfeng Deng y Yu Zhao. "NaCl Activation of Steel Slag upon Component Adjustment". En Springer Series in Geomechanics and Geoengineering, 1282–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97115-5_86.
Texto completoNeto, João B. Ferreira, Catia Fredericci, João O. G. Faria, Fabiano F. Chotoli, Tiago R. Ribeiro, Antônio Malynowskyj, Andre N. L. Silva, Valdecir A. Quarcioni y Andre A. Lotto. "Treatment of Molten Steel Slag for Cement Application". En REWAS 2016, 157–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48768-7_23.
Texto completoFerreira Neto, João B., Catia Fredericci, João O. G. Faria, Fabiano F. Chotoli, Tiago R. Ribeiro, Antônio Malynowskyj, Andre N. L. Silva, Valdecir A. Quarcioni y Andre A. Lotto. "Treatment Of Molten Steel Slag for Cement Application". En Rewas 2016: Towards Materials Resource Sustainability, 157–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119275039.ch23.
Texto completoActas de conferencias sobre el tema "Steel Slag"
Sun, Xiaowei, Wanyang Niu y Jingbo Zhao. "Performance Research on Slag-Steel Slag Based Composite Portland Cement". En 2015 International Conference on Advanced Engineering Materials and Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaemt-15.2015.142.
Texto completoDunster, A. "The use of blastfurnace slag and steel slag as aggregates". En Proceedings of the Fourth European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Bitmat 4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203743928-38.
Texto completoZanelli, U. y E. Sedano. "Safe Slag and Liquid Steel Handling". En AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/065.
Texto completoYildirim, Irem Zeynep y Monica Prezzi. "Steel Slag: Chemistry, Mineralogy, and Morphology". En IFCEE 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479087.263.
Texto completo"Corrosion of Steel in Slag Concrete". En "SP-199: Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete". American Concrete Institute, 2001. http://dx.doi.org/10.14359/10532.
Texto completoYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang y T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". En MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_622_627.
Texto completoYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang y T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". En MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_622_627.
Texto completoWang, Chang-long, Yan-ming Qi y Jin-yun He. "Experimental Study on Steel Slag and Slag Replacing Sand in Concrete". En 2008 International Workshop on Modelling, Simulation and Optimization. IEEE, 2008. http://dx.doi.org/10.1109/wmso.2008.13.
Texto completoMartinez Rehlaender, E. "Selective Slag Systems for Steel Inclusion Cleanliness". En AISTech 2022 Proceedings of the Iron and Steel Technology Conference. AIST, 2022. http://dx.doi.org/10.33313/386/118.
Texto completoHarabinova, Slavka. "PROPERTIES OF AGGREGATES OF STEEL-MAKING SLAG". En 14th SGEM GeoConference on ENERGY AND CLEAN TECHNOLOGIES. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b42/s18.026.
Texto completoInformes sobre el tema "Steel Slag"
Yildirim, Irem y Monica Prezzi. Use of Steel Slag in Subgrade Applications. West Lafayette, Indiana: Purdue University, 2011. http://dx.doi.org/10.5703/1288284314275.
Texto completoYildirim, Irem, Monica Prezzi, Meera Vasudevan y Helen Santoso. Use of Soil-Steel Slag-Class-C Fly Ash Mixtures in Subgrade Applications. Purdue University, octubre de 2013. http://dx.doi.org/10.5703/1288284315188.
Texto completoCohen, A. y M. Blander. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag. Office of Scientific and Technical Information (OSTI), diciembre de 1995. http://dx.doi.org/10.2172/510297.
Texto completoFUHRMANN, M. SCHOONEN,M. LEACHING OF SLAG FROM STEEL RECYCLING: RADIONUCLIDES AND STABLE ELEMENTS. DATA REPORT, JAN.15, 1997, REVISED SEPT.9, 1997. Office of Scientific and Technical Information (OSTI), julio de 2003. http://dx.doi.org/10.2172/15006588.
Texto completoS. Street, K.S. Coley y G.A. Iron. AISI/DOE Technology Roadmap Program: Removal of Residual Elements in The Steel Ladle by a Combination of Top Slag and Deep Injection Practice. Office of Scientific and Technical Information (OSTI), agosto de 2001. http://dx.doi.org/10.2172/799244.
Texto completoGroeneveld. L51676 Evaluation of Modern X70 and X80 Line Pipe Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 1992. http://dx.doi.org/10.55274/r0010158.
Texto completoBrent S. Isaacson, Mike Slepian y Thomas Richter. Project B: Improved Liquid Steel Feed For Slab Casters. Office of Scientific and Technical Information (OSTI), octubre de 1998. http://dx.doi.org/10.2172/795014.
Texto completoWilliams, D. y W. Maxey. NR198506 Evaluation of an X70 Low-Carbon Bainitic-Steel Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 1985. http://dx.doi.org/10.55274/r0011411.
Texto completoPAL, UDAY B. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999). Office of Scientific and Technical Information (OSTI), agosto de 1999. http://dx.doi.org/10.2172/12659.
Texto completoBrent Isaacson, Mike Slepian y Thomas Richter. AISI/DOE Advanced Process Control Program Vol. 3 of 6: Improved Liquid Steel Feeding for Slab Casters. Office of Scientific and Technical Information (OSTI), junio de 1999. http://dx.doi.org/10.2172/795001.
Texto completo