Literatura académica sobre el tema "Superconductivity, Graphite"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Superconductivity, Graphite".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Superconductivity, Graphite"
Volovik, G. E. "Graphite, Graphene, and the Flat Band Superconductivity". JETP Letters 107, n.º 8 (abril de 2018): 516–17. http://dx.doi.org/10.1134/s0021364018080052.
Texto completoLarkins, Grover, Yuriy Vlasov y Kiar Holland. "Evidence of superconductivity in doped graphite and graphene". Superconductor Science and Technology 29, n.º 1 (8 de diciembre de 2015): 015015. http://dx.doi.org/10.1088/0953-2048/29/1/015015.
Texto completoSmith, Robert P., Thomas E. Weller, Christopher A. Howard, Mark P. M. Dean, Kaveh C. Rahnejat, Siddharth S. Saxena y Mark Ellerby. "Superconductivity in graphite intercalation compounds". Physica C: Superconductivity and its Applications 514 (julio de 2015): 50–58. http://dx.doi.org/10.1016/j.physc.2015.02.029.
Texto completoEmery, Nicolas, Claire Hérold, Jean-François Marêché, Christine Bellouard, Geneviève Loupias y Philippe Lagrange. "Superconductivity in Li3Ca2C6 intercalated graphite". Journal of Solid State Chemistry 179, n.º 4 (abril de 2006): 1289–92. http://dx.doi.org/10.1016/j.jssc.2006.01.053.
Texto completoJishi, R. A. y M. S. Dresselhaus. "Superconductivity in graphite intercalation compounds". Physical Review B 45, n.º 21 (1 de junio de 1992): 12465–69. http://dx.doi.org/10.1103/physrevb.45.12465.
Texto completoOHSAKU, TADAFUMI. "RELATIVISTIC MODEL OF TWO-BAND SUPERCONDUCTIVITY IN (2 + 1)-DIMENSION". International Journal of Modern Physics B 18, n.º 12 (10 de mayo de 2004): 1771–94. http://dx.doi.org/10.1142/s0217979204024926.
Texto completoNunes, Lizardo H. C. M., A. L. Mota y E. C. Marino. "Superconductivity in graphene stacks: From the bilayer to graphite". Solid State Communications 152, n.º 23 (diciembre de 2012): 2082–86. http://dx.doi.org/10.1016/j.ssc.2012.08.019.
Texto completoEsquinazi, P., T. T. Heikkilä, Y. V. Lysogorskiy, D. A. Tayurskii y G. E. Volovik. "On the superconductivity of graphite interfaces". JETP Letters 100, n.º 5 (noviembre de 2014): 336–39. http://dx.doi.org/10.1134/s0021364014170056.
Texto completoKopelevich, Y., R. R. da Silva, J. H. S. Torres, S. Moehlecke y M. B. Maple. "High-temperature local superconductivity in graphite and graphite–sulfur composites". Physica C: Superconductivity 408-410 (agosto de 2004): 77–78. http://dx.doi.org/10.1016/j.physc.2004.02.039.
Texto completoKawai, N. F. y Hiroshi Fukuyama. "Anisotropic superconductivity in graphite intercalation compound YbC6". Physica C: Superconductivity and its Applications 468, n.º 24 (diciembre de 2008): 2403–7. http://dx.doi.org/10.1016/j.physc.2008.09.009.
Texto completoTesis sobre el tema "Superconductivity, Graphite"
Ballestar, Ana. "Superconductivity at Graphite Interfaces". Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-141196.
Texto completoDean, M. P. M. "Superconductivity and electron-phonon interactions in graphite intercalation compounds". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598476.
Texto completoWeller, T. E. "Superconductivity in the intercalated graphite compounds C6Yb and C6Ca". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446134/.
Texto completoPrecker, Christian E., Pablo D. Esquinazi, Ana Champi, José Barzola-Quiquia, Mahsa Zoraghi, Santiago Muinos-Landin, Annette Setzer et al. "Identification of a possible superconducting transition above room temperature in natural graphite crystals". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-216014.
Texto completoBallestar, Ana [Verfasser], Pablo [Akademischer Betreuer] Esquinazi y Pablo [Gutachter] Esquinazi. "Superconductivity at Graphite Interfaces / Ana Ballestar ; Gutachter: Pablo Esquinazi ; Betreuer: Pablo Esquinazi". Leipzig : Universitätsbibliothek Leipzig, 2014. http://d-nb.info/1238601561/34.
Texto completoCamargo, Bruno Cury 1988. "Efeitos quânticos em semimetais de Dirac e heteroestruturas relacionadas". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276954.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-25T10:44:08Z (GMT). No. of bitstreams: 1 Camargo_BrunoCury_D.pdf: 12321037 bytes, checksum: 83e565ea9fa63c5cf0f9f7a0fb7be452 (MD5) Previous issue date: 2014
Resumo: Neste trabalho serão apresentados os principais resultados obtidos peloautor no decorrer de seu doutorado. Os sistemas estudados eram compostos por grafite, grafeno, antimônio e interfaces de grafite/silício. Uma das partes do trabalho consistiu no estudo de efeitos de desordem estrutural sobre oscilações quânticas em grafite. O estudo revelou que a mosaicidade da grafite estudada, largamente utilizada para se determinar a qualidade de amostras de grafite pirolítico altamente orientado (HOPG), não apresenta correlação com a amplitude das oscilações quânticas no material. Ao invés disso, os experimentos mostraram uma clara correlação entre a rugosidade superficial, a mobilidade eletrônica média e a amplitude do efeito de Haas van Alphen no material. Os resultados indicam que deformações da superfície da grafite afetam fortemente a mobilidade eletrônica do material (reduzindo a amplitude de oscilações quânticas) sem reduzir sua anisotropia. No trabalho, também é discutida a possibilidade de que as oscilações quânticas em grafite estejam relacionadas com a existência de interfaces bem definidas na estrutura interna do material. Também foram estudadas propriedades de transporte elétrico interplanar em grafite no limite ultraquântico. Medidas de magnetorresistência interplanar para campos magnéticos de até 60 T acusaram a ocorrência de uma região de magnetorresistência positiva seguida de magnetorresistência negativa (MRN) para campos magnéticos suficientemente altos. O efeito persistia até temperatura ambiente. Ele é explicado considerando-se o tunelamento de férmions de Dirac entre níveis fundamentais de Landau de planos de grafeno adjacentes dentro da grafite. A região de MRN é mais pronunciada em grafites com menor mosaicidade, o que sugere que o alargamento de níveis de Landau seja responsável pela magnetorresistência positiva observada nas medidas ao longo do eixo c da grafite. Além disso, experimentos de magnetorresistência interplanar com campos magnéticos orientados paralelamente à direção dos planos da grafite apresentaram indícios de que o material se torna mais tridimensional com a redução da temperatura. Os resultados sugerem que a integral de overlap interplanar em grafite possui valor ?1 < 7 meV. Esse valor é muito inferior àqueles reportados na literatura considerando-se o modelo mais bem aceito para grafite, segundo o qual ?1 ? 380 meV. Nesta tese também são apresentados resultados inéditos obtidos pelo autor relacionados a efeito Hall quântico em grafeno crescido epitaxial mente sobre substratos de carbeto de silício, efeitos de desordem estrutural sobre as propriedades de transporte elétrico basal da grafite, supercondutividade em heteroestruturas de grafite e silício e supercondutividade em compósitos de antimônio-ouro
Abstract: In this thesis, experimental results obtained by the author during his PhD will be presented. The work consisted on the study of electrical and magnetic properties of Dirac semimetals and related heterostructures. Namely: graphite, graphene, graphite/silicon interfaces and antimony. Part of the work about graphite consisted on the study of the effects of structural disorder on the quantum oscillations in the material. Experimental results in the literature widely regard the mosaic spread in graphite as a good disorder parameter. However, in the present work, we report that the mosaicity of graphite samples does not correlate with their quantum oscillations¿ amplitude. Experiments have revealed a clear relation of surface roughness to the electronic mobility and the amplitude of the deHaas van Alphen effect in the material. The possibility that quantum oscillations in graphite are affected by the presence of sharp interfaces within its stacking structure is also discussed. We have also studied out-of-plane magnetoresistance properties in ultraquantum graphite. Experiments performed at magnetic fields B//c up to 60 T have shown the occurrence of positive c-axis magnetoresistance followed by a region of negative magnetoresistance (NMR). The NMR persists up to room temperature and has been explained in terms of the tunneling of electrons between zero-energy Landau levels of adjacent graphitic layers. The NMR is more evident in samples with low mosaicity, suggesting the positive c-axis magnetoresistance is induced by means of broadening of LL¿s by disorder. In addition, c-axis magnetoresistance measurements with magnetic fields perpendicular to c-axis (B?c) suggest that our samples undergo a 2D to 3D transition with the reduction of temperature. Based on our results, we estimate a value for the interplane hopping energy parameter ?1 < 7 meV. This value is at odds with the most accepted model for graphite, for which ?1 ? 380 meV. In this thesis, we also present unpublished results on the occurrence of quantum Hall effect in graphene grown epitaxially in silicon carbide substrates, on the effects of structural disorder in the basal electric properties of graphite
Doutorado
Física
Doutor em Ciências
Merlo, Rafael Borges 1983. "Supercondutividade em materiais à base de carbono". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277964.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-19T07:21:49Z (GMT). No. of bitstreams: 1 Merlo_RafaelBorges_M.pdf: 2866064 bytes, checksum: f84ae56edecef43c0c046f5d592e5baa (MD5) Previous issue date: 2011
Resumo: Evidências experimentais e teóricas recentes de que a supercondutividade nas várias formas alotrópicas do carbono pode ocorrer em temperaturas próximas ou até acima da temperatura ambiente, desencadearam um grande interesse científico. Resultados do presente trabalho demonstraram a ocorrência de supercondutividade em compósitos de carbono vítreo-enxofre (CV-S) a T = 3 K. Nossas medidas revelaram que a supercondutividade ocorre em uma pequena fração da amostra, e que a grafitização do carbono amorfo parece ser uma condição necessária para disparar a supercondutividade. Apresentamos também evidências de supercondutividade à temperatura ambiente em sanduíches de grafite/Si, e demonstramos que a supercondutividade está associada à interface grafite/silício. O comportamento encontrado é semelhante ao conhecido para estruturas supercondutoras de baixadimensionalidade. Em particular, observamos oscilações do tipo Josephson em curvas características de corrente-tensão (I-V), bem como sua supressão pela aplicação de campo magnético. Além disso, o campo magnético perpendicular transforma as curvas características I-V do tipo supercondutor para tipo isolante, assemelhando-se à transição supercondutor-isolante induzida por campo magnético em redes de junções Josephson. Todos estes resultados indicam que a interface grafite/silício pode ser um material promissor para o desenvolvimento de dispositivos microeletrônicos sem dissipação à temperatura ambiente
Abstract: Recent both experimental and theoretical evidence that superconductivity in various allotropic forms of carbon can occur at temperatures near or even above room temperature, triggered a broad scientific interest. Results of the present work demonstrated the occurrence of superconductivity in carbon glassy-sulfur composites (CV-S) at T = 3 K. Our measurements revealed that the superconductivity occurs in a small fraction of the sample, and that the graphitization of the amorphous carbon seems to be a necessary condition to trigger the superconductivity. We also present evidence for the room temperature superconductivity in graphite/Si sandwiches and demonstrate that the superconductivity is associated with the graphite/silicon interface. The found behavior is similar to that known for low-dimensional superconducting structures. In particular, we have observed Josephson-type oscillations in current-voltage (I-V) characteristics as well as their suppression by applied magnetic field. Moreover, the perpendicular magnetic field transforms the superconducting-like to insulating-like I-V characteristics resembling the magnetic-field-driven superconductor-insulator transition in Josephsonjunction-arrays. All these results indicate that graphite-silicon interface can be a promising material for the development of microelectronic devices without dissipation at room temperature
Mestrado
Supercondutividade
Mestre em Física
Gutierrez, Yatacue Diego Fernando. "Efeito de proximidade gigante entre supercondutor e grafite". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277897.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-13T05:43:34Z (GMT). No. of bitstreams: 1 GutierrezYatacue_DiegoFernando_M.pdf: 13276293 bytes, checksum: 707c38ac7116b9830e881ac37cc37b9e (MD5) Previous issue date: 2009
Resumo: No intuito de verificar a existência de correlações supercondutoras em grafite, estudamos a possível existência do fenômeno conhecido como efeito de proximidade gigante em amostras de grafite pirolítica altamente orientada (HOPG). Medidas de magneto-transporte realizadas em amostras de HOPG com eletrodos supercondutores de In ou In-Pb revelaram a ocorrência de efeito de proximidade em uma escala muito maior que o comprimento de coerência dos eletrodos supercondutores, o que indica que a grafite pode ser considerada um supercondutor com flutuações de fase. Além disso, nossos estudos revelaram uma supressão do efeito de proximidade para campos magnéticos da ordem de 1 kOe aplicado perpendicularmente aos planos de grafite. Adicionalmente, realizamos estudos comparativos do efeito de proximidade em bismuto metálico. Discutimos os resultados obtidos em termos de modelos teóricos propostos para este assunto.
Abstract: In order to verify the existence of superconducting correlations in graphite, in this work we studied the possibility of the so-called giant proximity effect in highly oriented pyrolytic graphite (HOPG) samples. Magnetoresistance measurements performed on various thoroughly characterized HOPG samples with attached superconducting In or Pb-In electrodes revealed the occurrence of proximity effect on a scale much bigger than a coherence length of superconducting electrodes, indicating that graphite can be considered as a phase-fluctuating superconductor, indeed. Besides, our studies revealed a suppression of the proximity effect in magnetic field H ~ 1 kOe applied perpendicularly to graphene planes. Additionally, we performed comparative studies of the proximity effect in semimetallic bismuth. We discuss the obtained results in terms of available theoretical models.
Mestrado
Física da Matéria Condensada
Mestre em Física
El, Bana Mohammed Sobhy El Sayed. "Superconductivity in two-dimensional crystals". Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589655.
Texto completoShajari, Hasti. "Gate-tunable superconductivity in thin films and layered crystals". Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760970.
Texto completoLibros sobre el tema "Superconductivity, Graphite"
Claire, Hérolda y Lagrange Philippe, eds. Superconducting intercalated graphite. Hauppauge, N.Y: Nova Science Publishers, 2008.
Buscar texto completoBurset Atienza, Pablo. Superconductivity in Graphene and Carbon Nanotubes. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01110-3.
Texto completoEnoki, Toshiaki, Morinobu Endo y Masatsugu Suzuki. Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.001.0001.
Texto completoSuperconductivity In Graphene And Carbon Nanotubes Proximity Effect And Nonlocal Transport. Springer International Publishing AG, 2013.
Buscar texto completoCarroll, David y Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene. Wiley & Sons, Incorporated, John, 2015.
Buscar texto completoCarroll, David y Siegmar Roth. One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene. Wiley-VCH Verlag GmbH, 2015.
Buscar texto completoKresin, Vladimir, Sergei Ovchinnikov y Stuart Wolf. Superconducting State. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198845331.001.0001.
Texto completoCapítulos de libros sobre el tema "Superconductivity, Graphite"
Tanuma, Sei-ichi. "Superconductivity of Graphite Intercalation Compounds". En Graphite Intercalation Compounds II, 163–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84479-9_5.
Texto completoDresselhaus, G. y A. Chaiken. "Superconductivity in Graphite Intercalation Compounds". En Intercalation in Layered Materials, 387–406. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-5556-5_35.
Texto completoMarino, Eduardo C. y Lizardo H. C. M. Nunes. "Superconductivity in Layered Systems of Dirac Electrons". En Basic Physics of Functionalized Graphite, 97–122. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39355-1_5.
Texto completoHeikkilä, Tero T. y Grigory E. Volovik. "Flat Bands as a Route to High-Temperature Superconductivity in Graphite". En Basic Physics of Functionalized Graphite, 123–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39355-1_6.
Texto completoGauzzi, A., N. Bendiab, M. D’Astuto, B. Canny, M. Calandra, F. Mauri, G. Loupias et al. "High Pressure and Superconductivity: Intercalated Graphite Cac6 as a Model System". En NATO Science for Peace and Security Series B: Physics and Biophysics, 407–18. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9258-8_33.
Texto completoBurset Atienza, Pablo. "The Graphene-Superconductor Interface". En Superconductivity in Graphene and Carbon Nanotubes, 51–81. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_4.
Texto completoBurset Atienza, Pablo. "Nonlocal Transport in Graphene". En Superconductivity in Graphene and Carbon Nanotubes, 83–99. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_5.
Texto completoOno, S., H. Hayakawa, K. Tanabe, K. Naito y Y. Imasato. "CGS: The Crystal Structure Graphics Display System for Superconducting Materials". En Advances in Superconductivity II, 197–99. Tokyo: Springer Japan, 1990. http://dx.doi.org/10.1007/978-4-431-68117-5_42.
Texto completoBurset Atienza, Pablo. "Green Functions Techniques for Graphene Layers with Edges". En Superconductivity in Graphene and Carbon Nanotubes, 31–50. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_3.
Texto completoBurset Atienza, Pablo. "Introduction". En Superconductivity in Graphene and Carbon Nanotubes, 1–5. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_1.
Texto completoActas de conferencias sobre el tema "Superconductivity, Graphite"
Sorrell, C. C., T. C. Palmer, L. J. Bowen y A. Nakaruk. "Solar-thermal energy conversion and storage: Conductive heat transfer using bulk graphite". En 2009 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2009. http://dx.doi.org/10.1109/asemd.2009.5306656.
Texto completoManaf, Muhamad Nasruddin, Iman Santoso y Arief Hermanto. "The possibility of superconductivity in twisted bilayer graphene". En THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930708.
Texto completoSorrell, C. C., J. R. Rider, J. S. Roh, K. Notlen-Read y J. Dave. "Comparison of commercial bulk graphites". En 2009 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2009. http://dx.doi.org/10.1109/asemd.2009.5306626.
Texto completoElghazoly, Sarah y Michael McGuigan. "Visualization and quantum computation of Moiré superconductivity in bilayer graphene, carbon nanocones and nanostrips". En 2018 New York Scientific Data Summit (NYSDS). IEEE, 2018. http://dx.doi.org/10.1109/nysds.2018.8538949.
Texto completoYuan, Ruiyi, Yunqi Xing y Wenbo Zhu. "Study on Flashover Characteristics of Epoxy Resin/Graphene Oxide Nanocomposites". En 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2020. http://dx.doi.org/10.1109/asemd49065.2020.9276211.
Texto completoRana, Masud, Biplob Hossain, Rabiul Islam y You Guang Guo. "Surface plasmon polariton propagation modeling for graphene parallel pair sheets using FDTD". En 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2015. http://dx.doi.org/10.1109/asemd.2015.7453524.
Texto completoZhang, Cheng, Boxue Du, Jin Li, Hucheng Liang, Meng Xiao, Zhaoyu Ran, Zehua Wang et al. "Temperature Dependent Carrier Mobility of Epoxy/BN/Graphene Composites for HTS Cable Joint". En 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2018. http://dx.doi.org/10.1109/asemd.2018.8558947.
Texto completoInformes sobre el tema "Superconductivity, Graphite"
Kopelevitch, Iakov. Interface Superconductivity in Graphite- and CuCl-Based Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, enero de 2015. http://dx.doi.org/10.21236/ad1013228.
Texto completo