Literatura académica sobre el tema "Symmetry group"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Symmetry group".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Symmetry group"
Grenier, B. y R. Ballou. "Crystallography: Symmetry groups and group representations". EPJ Web of Conferences 22 (2012): 00006. http://dx.doi.org/10.1051/epjconf/20122200006.
Texto completoDryzun, Chaim. "Continuous symmetry measures for complex symmetry group". Journal of Computational Chemistry 35, n.º 9 (6 de febrero de 2014): 748–55. http://dx.doi.org/10.1002/jcc.23548.
Texto completoRichey, M. P. y C. A. Tracy. "Symmetry group for a completely symmetric vertex model". Journal of Physics A: Mathematical and General 20, n.º 10 (11 de julio de 1987): 2667–77. http://dx.doi.org/10.1088/0305-4470/20/10/010.
Texto completoRAUHUT, HOLGER. "WAVELET TRANSFORMS ASSOCIATED TO GROUP REPRESENTATIONS AND FUNCTIONS INVARIANT UNDER SYMMETRY GROUPS". International Journal of Wavelets, Multiresolution and Information Processing 03, n.º 02 (junio de 2005): 167–87. http://dx.doi.org/10.1142/s0219691305000816.
Texto completoKlickstein, Isaac, Louis Pecora y Francesco Sorrentino. "Symmetry induced group consensus". Chaos: An Interdisciplinary Journal of Nonlinear Science 29, n.º 7 (julio de 2019): 073101. http://dx.doi.org/10.1063/1.5098335.
Texto completoFernández, Francisco M. y Javier Garcia. "Parity-time symmetry broken by point-group symmetry". Journal of Mathematical Physics 55, n.º 4 (abril de 2014): 042107. http://dx.doi.org/10.1063/1.4870642.
Texto completoZamani, Yousef y Esmaeil Babaei. "SYMMETRY CLASSES OF POLYNOMIALS ASSOCIATED WITH THE DICYCLIC GROUP". Asian-European Journal of Mathematics 06, n.º 03 (septiembre de 2013): 1350033. http://dx.doi.org/10.1142/s1793557113500332.
Texto completoPIROGOV, YU F. "CHIRAL GAUGE E6 AS A BINDING GROUP FOR COMPOSITE LEPTONS, QUARKS AND HIGGS BOSONS". International Journal of Modern Physics A 09, n.º 09 (10 de abril de 1994): 1397–410. http://dx.doi.org/10.1142/s0217751x94000613.
Texto completoMatthews, P. C. "Automating Symmetry-Breaking Calculations". LMS Journal of Computation and Mathematics 7 (2004): 101–19. http://dx.doi.org/10.1112/s1461157000001066.
Texto completoDmitriev, Victor, Dimitrios C. Zografopoulos y Luis P. V. Matos. "Analysis of Symmetric Electromagnetic Components Using Magnetic Group Theory". Symmetry 15, n.º 2 (3 de febrero de 2023): 415. http://dx.doi.org/10.3390/sym15020415.
Texto completoTesis sobre el tema "Symmetry group"
George, Timothy Edward. "Symmetric representation of elements of finite groups". CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.
Texto completoCarteret, Hilary Ann. "Symmetry and multiparticle entanglement". Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341118.
Texto completoLee, Seungkyu Liu Yanxi. "Symmetry group extraction from multidimensional real data". [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4720/index.html.
Texto completoBone, Richard George Andrew. "New applications of the molecular symmetry group". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239761.
Texto completoHenninger, Helen Clare. "The symmetry group of a model of hyperbolic plane geometry and some associated invariant optimal control problems". Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1018232.
Texto completoHuyal, Ulas. "Conformal Symmetry In Field Theory". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613136/index.pdf.
Texto completoHills, Robert K. "The algebra of a class of permutation invariant irreducible operators". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260729.
Texto completoVaintrob, Dmitry. "Mirror symmetry and the K theory of a p-adic group". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104578.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-61).
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth = e "truncated" analogue Loc(e) which has finite-dimensional stalks, and satisfies the property RIP ... V of depth = e. We deduce that every finitely-generated representation of G has a bounded resolution by representations induced from finite-dimensional representations of compact open subgroups, and use this to write down a set of generators for the K-theory of G in terms of K-theory of its parahoric subgroups.
by Dmitry A. Vaintrob.
Ph. D.
Gersch, Roland. "Symmetry breaking in interacting Fermi systems with the functional renormalization group". [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-32947.
Texto completoCassart, Delphine. "Optimal tests for symmetry". Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.
Texto completoLa construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.
Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.
Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).
Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.
Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.
Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.
Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.
Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.
A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.
Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Libros sobre el tema "Symmetry group"
Carter, Robert L. Molecular symmetry and group theory. New York: J. Wiley, 1998.
Buscar texto completo1940-, Baum Carl E. y Kritikos H. N, eds. Electromagnetic symmetry. Washington, D.C: Taylor & Francis, 1995.
Buscar texto completoPauncz, Ruben. The symmetric group in quantum chemistry. Boca Raton: CRC Press, 1995.
Buscar texto completoLadd, Mark. Symmetry and group theory in chemistry. Chichester: Horwood, 1998.
Buscar texto completoRowe, David John. Practical group theory. 2a ed. [Toronto, Ont.]: Custom Pub. Service, University of Toronto Bookstores, 1995.
Buscar texto completoSymmetry rules: How science and nature are founded on symmetry. Berlin: Springer, 2008.
Buscar texto completoHolod, P. I. Matematychni osnovy teoriï symetriĭ. Kyïv: Nauk. dumka, 1992.
Buscar texto completoR, Wallach Nolan, ed. Symmetry, representations, and invariants. Dordrecht [Netherlands]: Springer, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Symmetry group"
Davidson, George. "Symmetry elements and symmetry operations". En Group theory for chemists, 1–16. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_1.
Texto completoFranzen, Hugo Friedrich. "Space Group Symmetry". En Physical Chemistry of Inorganic Crystalline Solids, 24–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71237-1_3.
Texto completoRosen, Joseph. "Group Theory Continued". En Symmetry in Science, 38–65. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2506-5_3.
Texto completoGolubitsky, Martin y Ian Stewart. "Bifurcation From Group Orbits". En The Symmetry Perspective, 161–99. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8167-8_6.
Texto completoDavvaz, Bijan. "Group Actions on Sets". En Groups and Symmetry, 1–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6108-2_1.
Texto completoLesk, Arthur M. "Symmetry". En Introduction to Symmetry and Group Theory for Chemists, 3–10. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2151-8_2.
Texto completoDavidson, George. "Symmetry and bonding". En Group theory for chemists, 123–49. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_10.
Texto completoDietrich, R. V. "Symmetry and Morphological Crystallography". En The Tourmaline Group, 11–40. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-8085-6_2.
Texto completoSinger, Stephanie Frank. "Symmetries are Lie Group Actions". En Symmetry in Mechanics, 83–100. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0189-2_6.
Texto completoKing, R. Bruce. "Group Theory and Symmetry". En Beyond the Quartic Equation, 1–28. Boston: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4849-7_2.
Texto completoActas de conferencias sobre el tema "Symmetry group"
Shah, Parikshit y Venkat Chandrasekaran. "Group symmetry and covariance regularization". En 2012 46th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2012. http://dx.doi.org/10.1109/ciss.2012.6310765.
Texto completoMURATA, SOUICHI. "RENORMALIZATION GROUP SYMMETRY AND GAS DYNAMICS". En Proceedings of the International Conference on SPT 2004. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702142_0027.
Texto completoDawkins, Paloma, Maral Mohammadian y Tali Goldstein. "Museum of symmetry". En SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3226552.3226568.
Texto completoLi, Yong-Lu, Yue Xu, Xiaohan Mao y Cewu Lu. "Symmetry and Group in Attribute-Object Compositions". En 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01133.
Texto completoItoh, Katsumi. "Gauge Symmetry and the Functional Renormalization Group". En Sakata Memorial Workshop on Origin of Mass and Strong Coupling Gauge Theories. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813231467_0018.
Texto completoSoloveychik, Ilya y Ami Wiesel. "Group symmetry and non-Gaussian covariance estimation". En 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737087.
Texto completoParra-Mejı́as, Zaida. "Description of nanotubes using line group symmetry". En ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XV International Winterschool/Euroconference. AIP, 2001. http://dx.doi.org/10.1063/1.1426906.
Texto completoKharinov, Mikhail. "Natural non‐group symmetry in modern applications". En V International Scientific Workshop on Modeling, Information Processing and Computing. CEUR-WS.org, 2022. http://dx.doi.org/10.47813/dnit-mip5/2022-3091-38-45.
Texto completoTalyshev, Aleksandr A. "On extensions of the Poincaré group". En MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5125086.
Texto completoAYALA-SÁNCHEZ, MAURICIO y RICHARD W. HAASE. "GROUP CONTRACTIONS AND ITS CONSEQUENCES UPON REPRESENTATIONS OF DIFFERENT SPATIAL SYMMETRY GROUPS." En Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0008.
Texto completoInformes sobre el tema "Symmetry group"
Vassilev, Vassil. Geometric Symmetry Groups, Conservation Laws and Group-Invariant Solutions of the Willmore Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-246-265.
Texto completoVassilev, Vassil M. y Peter A. Djondjorov. Symmetry Groups, Conservation Laws and Group– Invariant Solutions of the Membrane Shape Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-265-279.
Texto completoJensen, David W. y Robert G. Harvey. Plane Symmetry Groups. Fort Belvoir, VA: Defense Technical Information Center, junio de 1988. http://dx.doi.org/10.21236/ada198952.
Texto completoBergman, Anna Marie. Identifying a Starting Point for the Guided Reinvention of the Classification of Chemically Important Symmetry Groups. Portland State University Library, mayo de 2020. http://dx.doi.org/10.15760/etd.7349.
Texto completoMekjian, A. Z. y S. J. Lee. Models of fragmentation phenomena based on the symmetric group S{sub n} and combinational analysis. Office of Scientific and Technical Information (OSTI), enero de 1991. http://dx.doi.org/10.2172/10107058.
Texto completoMekjian, A. Z. y S. J. Lee. Models of fragmentation phenomena based on the symmetric group S sub n and combinational analysis. Office of Scientific and Technical Information (OSTI), enero de 1991. http://dx.doi.org/10.2172/6091012.
Texto completoBlaze, Matt, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier y Tsutomu Shimomura. Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial Security. A Report by an Ad Hoc Group of Cryptographers and Computer Scientists. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1996. http://dx.doi.org/10.21236/ada385264.
Texto completo