Literatura académica sobre el tema "Therapeutics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Therapeutics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Therapeutics"
Misselbrook, David. "Therapeutics?" British Journal of General Practice 71, n.º 713 (25 de noviembre de 2021): 553. http://dx.doi.org/10.3399/bjgp21x717845.
Texto completoAzimi, A., S. Kuznecovs, J. Kuznecovs, A. Blazejczyk, M. Switalska, S. Chlopicki, A. Marcinek et al. "Therapeutics". Annals of Oncology 23, suppl 5 (1 de junio de 2012): v23—v32. http://dx.doi.org/10.1093/annonc/mds162.
Texto completoJoyce, David A. y Kenneth F. Ilett. "Therapeutics". Medical Journal of Australia 161, n.º 10 (noviembre de 1994): 622–26. http://dx.doi.org/10.5694/j.1326-5377.1994.tb127645.x.
Texto completoZipursky, Robert. "THERAPEUTICS". Schizophrenia Research 153 (abril de 2014): S65. http://dx.doi.org/10.1016/s0920-9964(14)70209-9.
Texto completoVan Zeeland, Yvonne R. A. "Therapeutics". Veterinary Clinics of North America: Exotic Animal Practice 21, n.º 2 (mayo de 2018): i. http://dx.doi.org/10.1016/s1094-9194(18)30020-3.
Texto completovan Zeeland, Yvonne R. A. "Therapeutics". Veterinary Clinics of North America: Exotic Animal Practice 21, n.º 2 (mayo de 2018): xiii—xv. http://dx.doi.org/10.1016/j.cvex.2018.02.001.
Texto completoAlisi, Anna, Sara Tomaselli, Clara Balsano y Angela Gallo. "Hepatitis C virus therapeutics: Editing enzymes promising therapeutic targets?" Hepatology 54, n.º 2 (25 de julio de 2011): 742. http://dx.doi.org/10.1002/hep.24409.
Texto completoBarish, Robert A. y Jerome F. X. Naradzay. "Ophthalmologic Therapeutics". Emergency Medicine Clinics of North America 13, n.º 3 (agosto de 1995): 649–67. http://dx.doi.org/10.1016/s0733-8627(20)30611-8.
Texto completoGreish, Khaled, Jun Fang, Takao Inutsuka, Akinori Nagamitsu y Hiroshi Maeda. "Macromolecular Therapeutics". Clinical Pharmacokinetics 42, n.º 13 (2003): 1089–105. http://dx.doi.org/10.2165/00003088-200342130-00002.
Texto completoKatsarou, Angeliki y Kostas Pantopoulos. "Hepcidin Therapeutics". Pharmaceuticals 11, n.º 4 (21 de noviembre de 2018): 127. http://dx.doi.org/10.3390/ph11040127.
Texto completoTesis sobre el tema "Therapeutics"
Lopez, Aguilar Aime. "Peptides as therapeutics". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d893e962-5cb9-4d50-bbe1-c5183418295c.
Texto completoBalivada, Sivasai. "Cell mediated therapeutics for cancer treatment: tumor homing cells as therapeutic delivery vehicles". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16890.
Texto completoDepartment of Anatomy and Physiology
Deryl L. Troyer
Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V266ED3, rMcherry red) plasmids were constructed. Membrane anchoring and activity of designed proteins were analyzed in RAW264.7 Mo/Ma and HEK293 cells in vitro. Further, Urokinase (uPA) mediated cleavage and release of rCasp3V266ED3 from engineered cells was tested (Chapter-4). Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments. Final chapter of present report shows evidence for immune-deficient line of pigs as a model for human cancers (Chapter-5)
Gunnam, Mallikarjunareddy. "Novel anti-norovirus therapeutics". Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/6818.
Texto completoThesis (M.S.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Chemistry
Hill, Jonathan B. "Deoxyvariolins and polymer therapeutics". Thesis, University of Canterbury. Chemistry, 2005. http://hdl.handle.net/10092/6695.
Texto completoReynolds, Francis M. M. B. A. Massachusetts Institute of Technology. "InVivo Therapeutics® Corporation". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37231.
Texto completoIncludes bibliographical references (leaf 100).
To date, the primary treatment for spinal cord injuries has been the use of spinal fixation devices to create a stable environment for the spinal cord to heal. The second treatment option is to remove soft tissue near and around the spinal cord intended to reduce pressure on the spinal cord and allow the spinal cord to heal on its own. InVivo Therapeutics Corporation is a startup founded to commercialize novel science and technology that was developed through a collaborative effort between the Massachusetts Institute of Technology's Langer labs, and the department of Neuroscience at Harvard Medical School. Together they have created a patent pending medical device that will provide the first "Neuro-Tissue Engineered" implantable device for the immediate treatment of spinal cord injuries. We expect to have our first product on the market in 2010, and we will continue to work in our labs to develop a portfolio of three to four product categories in order to meet the systemic needs of the spinal cord injury patient. This thesis presents the first business plan, to commercialize this innovative treatment option.
(cont.) It is always challenging to be first to market with such an innovative product, so we have meticulously explored all relevant strategic initiatives, and tactical tasks required to bring our products to market. As the result we have developed a comprehensive business plan to ensure InVivo's success. Key components of the plan are: Introduction to InVivo Therapeutics, InVivo's business model, critical strategic analysis, functional strategies, financial analysis, and an integrative strategic framework. We have created a vision, mission, and strategic model that will lead to InVivo Therapeutics becoming a global leader in the treatment of neurological disease.
by Francis M. Reynolds.
M.B.A.
O'Malley, Jennifer A. "Improving therapeutics for Parkinson's disease". Cincinnati, Ohio : University of Cincinnati, 2009. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1259079683.
Texto completoAdvisor: Kathy Steece-Collier. Title from electronic thesis title page (viewed Apr. 26, 2010). Keywords: Parkinson; dopamine; dyskinesia; levodopa; dendritic spine; medium spiny neuron. Includes abstract. Includes bibliographical references.
Langford, Nigel James. "Beta-receptor pharmacology and therapeutics". Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404060.
Texto completoDerfus, Austin Matthew. "Toward multifunctional nanoparticle-based therapeutics". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3254426.
Texto completoTitle from first page of PDF file (viewed May 3, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 121-135).
Sutter, Julianne V. "ASSESSING IMPACT OF AFFECT RECOGNITION ON THERAPEUTIC RELATIONSHIP". UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/14.
Texto completoChiu, Shih-Jiuan. "Receptor-mediated DNA-based therapeutics delivery". Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127403022.
Texto completoLibros sobre el tema "Therapeutics"
Agrawal, Sudhir. Antisense Therapeutics. New Jersey: Humana Press, 1996. http://dx.doi.org/10.1385/0896033058.
Texto completoTeicher, Beverly A. Cancer Therapeutics. New Jersey: Humana Press, 1996. http://dx.doi.org/10.1385/0896034607.
Texto completoPhillips, M. Ian. Antisense Therapeutics. New Jersey: Humana Press, 2004. http://dx.doi.org/10.1385/1592598544.
Texto completoAllerton, Charlotte, ed. Pain Therapeutics. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737715.
Texto completoSverdlov, Oleksandr y Joris van Dam. Digital Therapeutics. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003017288.
Texto completoJois, Seetharama D., ed. Peptide Therapeutics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04544-8.
Texto completoSrivastava, Ved, ed. Peptide Therapeutics. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016445.
Texto completoVaughan, Tristan, Jane Osbourn y Bahija Jallal, eds. Protein Therapeutics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527699124.
Texto completoTeicher, Beverly A., ed. Cancer Therapeutics. Totowa, NJ: Humana Press, 1997. http://dx.doi.org/10.1007/978-1-59259-717-8.
Texto completoCapítulos de libros sobre el tema "Therapeutics"
Louie, A. H. "Therapeutics". En IFSR International Series on Systems Science and Engineering, 223–34. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6928-5_14.
Texto completoLiu, Zhanwen. "Therapeutics". En Essentials of Chinese Medicine, 321–50. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-590-1_10.
Texto completoElliott, Peter G. "Therapeutics". En MRCGP, 64–80. London: Springer London, 1989. http://dx.doi.org/10.1007/978-1-4471-1710-0_4.
Texto completoMyers, Michael T. "Therapeutics". En COVID-ology, 75–102. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003310525-7.
Texto completoLiu, Zhanwen. "Therapeutics". En Essentials of Chinese Medicine, 321–50. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-112-5_10.
Texto completoRosenberg, Paul A. "Therapeutics". En Endodontic Pain, 159–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54701-0_8.
Texto completoNiazi, Sarfaraz K. "RNA Therapeutics". En mRNA Therapeutics, 67–106. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003248156-4.
Texto completoStein, Cy A., Britta Hoehn y John Rossi. "Oligonucleotide Therapeutics". En Principles of Anticancer Drug Development, 569–87. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7358-0_20.
Texto completoSchellekens, Huub. "Recombinant Therapeutics". En Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_4994-2.
Texto completoJain, Kewal K. "Cardiovascular Therapeutics". En Applications of Biotechnology in Cardiovascular Therapeutics, 1–27. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-240-3_1.
Texto completoActas de conferencias sobre el tema "Therapeutics"
Anders, J. "Emerging Photobiomodulation Therapeutics". En CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.atu3a.1.
Texto completoDormer, Kenneth, Sunny Po, Kejian Chen, Benjamin Scherlag, Isaac Rutel, Kytai Nguyen, Satish Kyriyavar et al. "Magnetic Targeting of Therapeutics". En ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13022.
Texto completoPires, Gabriel Natan, Ksdy Maiara Moura Sousa, Thábita Maganete, Paula Villena Redondo y Renata Redondo Bonaldi. "SleepUp, a Digital Therapeutics Platform for Insomnia". En XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.296.
Texto completoHarris, Claire. "SP0171 THE NEW COMPLEMENT THERAPEUTICS". En Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.8492.
Texto completoLee, Uichin, Gyuwon Jung, Sangjun Park, Eun-Yeol Ma, Heeyoung Kim, Yonggeon Lee y Youngtae Noh. "Data-driven Digital Therapeutics Analytics". En 2023 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2023. http://dx.doi.org/10.1109/bigcomp57234.2023.00093.
Texto completoSwaan, Abel, Berrend B. G. Muller, Rob A. A. van Kollenburg, Daniel M. de Bruin, Dick H. J. C. M. Sterenborg, Jean J. M. C. H. de la Rosette, Ton G. van Leeuwen y Dirk J. Faber. "One to one correlation of needle based optical coherence tomography with histopathology: a qualitative and quantitative analysis in 20 prostatectomy specimens (Conference Presentation)". En Therapeutics and Diagnostics in Urology, editado por Hyun Wook Kang y Kin Foong Chan. SPIE, 2017. http://dx.doi.org/10.1117/12.2250119.
Texto completoHeidari, Andrew E., Kyungjin Oh y Zhongping Chen. "Using optical coherence tomography to detect bacterial biofilms on foley catheters (Conference Presentation)". En Therapeutics and Diagnostics in Urology, editado por Hyun Wook Kang y Kin Foong Chan. SPIE, 2017. http://dx.doi.org/10.1117/12.2251242.
Texto completoPham, Ngot T., Seul Lee Lee, Yong Wook Lee y Hyun Wook Kang. "Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)". En Therapeutics and Diagnostics in Urology, editado por Hyun Wook Kang y Kin Foong Chan. SPIE, 2017. http://dx.doi.org/10.1117/12.2251369.
Texto completoLurie, Kristen L., Robin Guay Lord, Caroline Boudoux, Eric J. Seibel y Audrey K. Ellerbee. "Miniaturized rapid scanning, forward-viewing catheterscope for optical coherence tomography (Conference Presentation)". En Therapeutics and Diagnostics in Urology, editado por Hyun Wook Kang. SPIE, 2016. http://dx.doi.org/10.1117/12.2213077.
Texto completoSmith, Gennifer T., Kristen L. Lurie, Dimitar V. Zlatev, Joseph C. Liao y Audrey K. Ellerbee. "Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)". En Therapeutics and Diagnostics in Urology, editado por Hyun Wook Kang. SPIE, 2016. http://dx.doi.org/10.1117/12.2213242.
Texto completoInformes sobre el tema "Therapeutics"
Pitt iGEM, Pitt iGEM. Living Skin Therapeutics. Experiment, junio de 2014. http://dx.doi.org/10.18258/2764.
Texto completoPacifici, Maurizio. Preventative Therapeutics for Heterotopic Ossification. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2014. http://dx.doi.org/10.21236/ada612073.
Texto completoChakraborty, Srijani. The Dawn of RNA Therapeutics. Spring Library, diciembre de 2020. http://dx.doi.org/10.47496/sl.blog.19.
Texto completoLillo, Antonietta. Preparedness: surveillance, diagnostics, and therapeutics. Office of Scientific and Technical Information (OSTI), septiembre de 2023. http://dx.doi.org/10.2172/2005766.
Texto completoPrasad, Rajeev Ram. Physiotherapy, Gamification and Digital Therapeutics. Ames (Iowa): Iowa State University, mayo de 2024. http://dx.doi.org/10.31274/cc-20240624-1123.
Texto completoPapisov, Mikhail. Viral Oncolytic Therapeutics for Neoplastic Meningitis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2012. http://dx.doi.org/10.21236/ada609948.
Texto completoTortorella, Domenico y Veronika Redmann. Discovery and Testing of Ricin Therapeutics. Fort Belvoir, VA: Defense Technical Information Center, junio de 2012. http://dx.doi.org/10.21236/ada564153.
Texto completoKuruppu, Kumudu D. Viral Oncolytic Therapeutics for Neoplastic Meningitis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2012. http://dx.doi.org/10.21236/ada566647.
Texto completoMao, Hai-Quan. Vesicant Therapeutics Collaborative Core Research Program. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2012. http://dx.doi.org/10.21236/ada581049.
Texto completoKuruppu, Kumudu D. Viral Oncolytic Therapeutics for Neoplastic Meningitis. Fort Belvoir, VA: Defense Technical Information Center, julio de 2013. http://dx.doi.org/10.21236/ada592240.
Texto completo