Literatura académica sobre el tema "Transparent solids"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Transparent solids".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Transparent solids"
Grigor'ev, N. N., T. A. Kudykina y P. M. Tomchuk. "Laser-induced degradation of transparent solids". Journal of Physics D: Applied Physics 25, n.º 2 (14 de febrero de 1992): 276–83. http://dx.doi.org/10.1088/0022-3727/25/2/022.
Texto completoBhardwaj, V. R., P. P. Rajeev, P. B. Corkum y D. M. Rayner. "Strong field ionization inside transparent solids". Journal of Physics B: Atomic, Molecular and Optical Physics 39, n.º 13 (22 de junio de 2006): S397—S407. http://dx.doi.org/10.1088/0953-4075/39/13/s13.
Texto completoNemes, J. A. y P. W. Randles. "Energy deposition phenomena in partially transparent solids". Journal of Thermophysics and Heat Transfer 3, n.º 2 (abril de 1989): 160–66. http://dx.doi.org/10.2514/3.143.
Texto completoZhang, Jie, Dezhi Tan, Kaiqiang Cao, Tianqing Jia y Jianrong Qiu. "Large area patterning of ultra-high thermal-stable structural colors in transparent solids". Chinese Optics Letters 20, n.º 3 (2022): 030501. http://dx.doi.org/10.3788/col202220.030501.
Texto completoGertsvolf, M., M. Spanner, D. M. Rayner y P. B. Corkum. "Demonstration of attosecond ionization dynamics inside transparent solids". Journal of Physics B: Atomic, Molecular and Optical Physics 43, n.º 13 (23 de junio de 2010): 131002. http://dx.doi.org/10.1088/0953-4075/43/13/131002.
Texto completoZhurkov, S. N., V. A. Petrov, A. M. Kondyrev y A. E. Chmel. "Thermofluctuation nature of optical resistance of transparent solids". Philosophical Magazine B 57, n.º 2 (febrero de 1988): 307–17. http://dx.doi.org/10.1080/13642818808201624.
Texto completoLi, Xingcan, Chengchao Wang, Junming Zhao y Linhua Liu. "A New Method for Determining the Optical Constants of Highly Transparent Solids". Applied Spectroscopy 71, n.º 1 (20 de julio de 2016): 70–77. http://dx.doi.org/10.1177/0003702816657568.
Texto completoLi, JiaBo, Zheng Wang, Youjie Hua, Renguang Ye, Feifei Huang, Junjie Zhang y Shiqing Xu. "Enhanced infrared luminescence of multifunctional-nanoparticle-composited transparent solids". Applied Surface Science 600 (octubre de 2022): 154107. http://dx.doi.org/10.1016/j.apsusc.2022.154107.
Texto completoMelo, W. L. Barros y R. M. Faria. "Photoacoustic procedure for measuring thermal parameters of transparent solids". Applied Physics Letters 67, n.º 26 (25 de diciembre de 1995): 3892–94. http://dx.doi.org/10.1063/1.115308.
Texto completoGong, Cheng, Jiaming Jiang, Chuang Li, Liwei Song, Zhinan Zeng, Yinghui Zheng, Jing Miao et al. "Observation of CEP effect via filamentation in transparent solids". Optics Express 21, n.º 20 (2 de octubre de 2013): 24120. http://dx.doi.org/10.1364/oe.21.024120.
Texto completoTesis sobre el tema "Transparent solids"
Modoran, Georgia C. "Intense field electron excitation in transparent materials". Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133273960.
Texto completoShelley, Paul H. "Optical low coherence reflectometry for process analysis /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/8666.
Texto completoRead, Daniel Charles. "Novel transparent conducting polymers". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357118.
Texto completoWei, Shijun. "Flame-made Nb-doped TiO2 Thin Films for Application in Transparent Conductive Oxides". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447071519.
Texto completoKothurkar, Nikhil K. "Solid state, transparent, cadmium sulfide-polymer nanocomposites". [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006485.
Texto completoClermont-Gallerande, Hélène de. "Formulation et étude physico-chimique d'un rouge à lèvres solide, transparent et amorphe". Aix-Marseille 3, 2001. http://www.theses.fr/2001AIX30016.
Texto completo@The aim of this study is to create a transparent lipstick. We carried out a wide range of investigations in the field of oils solidifying agents such as waxes, gums, resins and powders. This screening has revealed the capacity of lanosterol to gelify some lipophilic liquids, preserving transparency. The formula always has to take in account two constraints : -Having a high enough breakage value. This has led us to increase the wax, lanosterol. -Avoiding formation of crystals when aging. This has led us to decrease the wax content, The formula thus has to be a compromise varying the raw materials to obtain the required properties. The raw materials selection criteria are restrictive. They include visible spectroscopic measurements to quantify transparency of the formulated product. The stick solidify is validated drop point and breakage measurements. After several investigations, a mixture of oils and solidifying agents is selected. Alkanes work well with lanosterol and give a homogenous, transparent solid mixture. Regarding the esters, the presence of a double bond as well as delocalised electrons from aromatic wrings delays the solidification of the medium. .
Palácio, Gustavo. "Conducteurs ioniques transparents et matériaux fluorescents à base de mélanges hybrides PEO/PPO-Siloxane". Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC075/document.
Texto completoIn this PhD thesis a greener synthesis route via sol-gel reactions aiming to prepare multifunctional organic-inorganic hybrid (OIH) materials based on blending of two polyether amine end chains (i.e., Jeffamine® compounds) Poly(ethylene oxide) (PEO) and Poly(propylene oxide) (PPO) covalently bonded with an ureasil cross-linking agent (U) is reported. Due to the different polar oxygen sites present in this OIH material, several metallic cations can to be introduced into the OIH matrix via ether- or carbonyl-type oxygen. So, different OIH matrices containing Eu3+ or Li+ cations were synthetized to evaluate their potential as photoluminescent or ionic conductor material, respectively. The thermal and structural characteristics of the Eu3+ or Li+ – loaded OIH materials, as well as the plasticizer effect of PPO2000 at the U-xPPO2000:/U-1-xPEO1900, (PPO2000 fraction x = 0.2, 0.5 and 0.8) blends, were carried out by DSC and SAXS. DSC results revealed a unique glass transition temperature (Tg) for all the studied OIH materials. The addition of Eu3+ cations do not change the Tg values while the Li+ cations caused an increase in the values of Tg, due to the Li+ interaction with the polymeric phase of the material. The U-PEO1900 calorimetric curves also showed the presence of an endothermic peak at 25 °C associated to the fusion of the crystalline domains of PEO1900. The second maxima observed in the curves of small angle X-ray scattering (SAXS) confirmed the presence of the crystalline structure of PEO1900 in a temperature range of -100 < T < Tf. All the samples, undoped and Li+ or Eu3+ doped ones, showed a correlation peak indicating that the OIH nano-structure is not affected by the metallic cations doping. Analysis carried out by Fourier Transform InfraRed (FTIR) and Raman Spectroscopy confirmed the Eu3+ cations interaction via the oxygen carbonyl-type present in the urea groups of the hybrid matrix, and that of Li+ cations with the oxygen ether-type. The accelerate photo-degradation revealed a loss of the photo-luminescence (PL) efficiency due to the changes in the Eu3+ cations coordination with the hybrid matrix. The photo-degradation induces the formation of photo-products from the macro-radical β-scission formed in the organic fraction of the hybrid matrix. The β-scission can be responsible for the material PL decrease due to the drop in the antenna effect from organic ligand to luminescent center. The visible emission transition from red → blue with the photo-degradation qualify these materials as good candidates to be applied as sensors and optical markers. The ionic conduction of the Li+-loaded hybrid matrices was investigated by Impedance Spectroscopy as a function of the temperature. Results showed a correlation between the lamellar superstructure of the PEO1900 and the conducting process. The plasticizers addition (PPO2000) alloyed to improve the value of the ionic conductivity in the low temperature range, -100 °C < T < 10 °C due to the increase of the amorphous fraction used as effective ionic transport pathway in the U-xPEO1900/U-1-xPPO2000 polymeric hybrid blend
Erslev, Peter Tweedie 1979. "The electronic structure within the mobility gap of transparent amorphous oxide semiconductors". Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10566.
Texto completoTransparent amorphous oxide semiconductors are a relatively new class of materials which show significant promise for electronic device applications. The electron mobility in these materials is at least ten times greater than that of the current dominant material for thin-film transistors: amorphous silicon. The density of states within the gap of a semiconductor largely determines the characteristics of a device fabricated from it. Thus, a fundamental understanding of the electronic structure within the mobility gap of amorphous oxides is crucial to fully developing technologies based around them. Amorphous zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO) were investigated in order to determine this sub-gap structure. Junction-capacitance based methods including admittance spectroscopy and drive level capacitance profiling (DLCP) were used to find the free carrier and deep defect densities. Defects located near insulator-semiconductor interfaces were commonly observed and strongly depended on fabrication conditions. Transient photocapacitance spectroscopy (TPC) indicated broad valence band-tails for both the ZTO and IGZO samples, characterized by Urbach energies of 110±20 meV. These large band-tail widths imply that significant structural disorder exists in the atomic lattice of these materials. While such broad band-tails generally correlate with poor electronic transport properties, the density of states near the conduction band is more important for devices such as transistors. The TPC spectra also revealed an optically active defect located at the insulator-semiconductor junction. Space-charge-limited current (SCLC) measurements were attempted in order to deduce the density of states near the conduction band. While the SCLC results were promising, their interpretation was too ambiguous to obtain a detailed picture of the electronic state distribution. Another technique, modulated photocurrent spectroscopy (MPC), was then employed for this purpose. Using this method narrow conduction band-tails were determined for the ZTO samples with Urbach energies near 10 meV. Thus, by combining the results of the DLCP, TPC and MPC measurements, a quite complete picture of the density of states within the mobility gap of these amorphous oxides has emerged. The relationship of this state distribution to transistor performance is discussed as well as to the future development of device applications of these materials.
Committee in charge: Stephen Kevan, Chairperson, Physics; J David Cohen, Member, Physics; David Strom, Member, Physics; Jens Noeckel, Member, Physics; David Johnson, Outside Member, Chemistry
Boucher, Virginie. "Élaboration de polymères nanocomposites transparents : relations structure/propriétés". Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10161/document.
Texto completoThis study deals with the preparation of transparent polycarbonate nanocomposites for industrial applications such as optical lenses or automotive glazing. Incorporating nanoparticles to polycarbonate matrix aimed to improve some of its properties such as stiffness, dimensional stability, or scratch resistance, while maintaining intrinsic properties such as its transparency. Polycarbonate nanocomposites transparency depends on one hand on mineral partic/es diameter and refractive index, and on the other hand on the good dispersion of particles in polymer matrix. Therefore, different types of mineral fillers were selected and incorporated in polycarbonate matrix. The evaluation of mechanical and optical properties of these nanocomposites permitted not only to refine particles selection, but also to highlight polycarbonate degradation during compounding with nanofillers. ln order to optimize materials performances, a thorough study of degradation mechanisms was carried out, and the nanocomposites preparation process was modified so as to Iimit polycarbonate degradation in presence of mineral fillers. Lastly, in a more general framework, the reinforcement mechanisms involved in nanocomposite materials were investigated, and showed the existence of correlations between materials structure and properties, and the effect of mineral fi/lers on polycarbonate molecular dynamics
MATTEI, CHRISTOPHE. "Etude par interferometrie optique de la propagation des ondes acoustiques guidees dans les milieux solides transparents". Paris 7, 1995. http://www.theses.fr/1995PA077139.
Texto completoLibros sobre el tema "Transparent solids"
S, Voloshin Arkady y Dryden Flight Research Facility, eds. Spectral contents readout of birefringent sensors. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1988.
Buscar texto completoHang kong zuo cang tou ming cai liao ying yong yan jiu xin jin zhan. Beijing Shi: Guo fang gong ye chu ban she, 2011.
Buscar texto completoDubietis, Audrius y Arnaud Couairon. Ultrafast Supercontinuum Generation in Transparent Solid-State Media. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14995-6.
Texto completoUnited States. National Aeronautics and Space Administration., ed. Cellular solidification of transparent monotectics: Semi-annual report. [Washington, DC: National Aeronautics and Space Administration, 1986.
Buscar texto completoExtracting transparency: A handbook on transparency and reform in the oil, gas and solid minerals sectors. Abuja: Nigeria Extractive Industries Transparency Initiative, 2005.
Buscar texto completoKlaus, Ellmer, Klein Andreas Dr y Rech Bernd, eds. Transparent conductive zinc oxide: Basics and applications in thin film solar cells. Berlin: Springer, 2008.
Buscar texto completoForum on New Materials (5th 2010 Montecatini Terme, Italy). New materials III: Transparent conducting and semiconducting oxides, solid state lighting, novel superconductors and electromagnetic metamaterials : proceedings of the 5th Forum on New Materials, part of CIMTEC 2010--12th International Ceramics Congress and 5th Forum on New Materials, Montecatini Terme, Italy, June 13-18, 2010. Stafa-Zuerich: Trans Tech Pubs. ltd. on behalf of Techna Group, 2011.
Buscar texto completoBendow, Bernard. Optical Properties of Highly Transparent Solids. Springer, 2012.
Buscar texto completoFemtosecond Laser Micromachining Photonic And Microfluidic Devices In Transparent Materials. Springer, 2012.
Buscar texto completoDubietis, Audrius y Arnaud Couairon. Ultrafast Supercontinuum Generation in Transparent Solid-State Media. Springer, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Transparent solids"
Jia, X., G. Quentin, A. Boumiz y J. Beige. "Interferometric Observation of Ultrasounds in Transparent Solids". En Acoustical Imaging, 41–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2958-3_6.
Texto completoRajeev, P. P., M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, D. M. Rayner y P. B. Corkum. "Polarization Dependence of Nanostructure Formation in Transparent Solids". En Ultrafast Phenomena XV, 659–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_211.
Texto completoSeo, H. J. y S. I. Yun. "Effect of Photoelasticity on Photothermal Beam Deflection in Transparent Solids". En Photoacoustic and Photothermal Phenomena III, 231–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47269-8_59.
Texto completoGruzdev, Vitali E. y Anastasia S. Gruzdeva. "Shock Electromagnetic Waves Resulting from Higher Harmonics Generation in Transparent Solids". En Atoms, Solids, and Plasmas in Super-Intense Laser Fields, 357–62. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1351-3_21.
Texto completoSvingala, F. R., M. J. Hargather y G. S. Settles. "Modern Optical Methods for Determining the Shock Hugoniot of Transparent Solids". En 28th International Symposium on Shock Waves, 497–502. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25688-2_76.
Texto completoClayton, J. D., B. B. Aydelotte, R. Becker, C. D. Hilton y J. Knap. "Continuum Modelling and Simulation of Indentation in Transparent Single Crystalline Minerals and Energetic Solids". En Applied Nanoindentation in Advanced Materials, 347–68. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119084501.ch15.
Texto completoMiao, Chengyun y Hareesh V. Tippur. "Two Modified Digital Gradient Sensing with Higher Measurement Sensitivity for Evaluating Stress Gradients in Transparent Solids". En Dynamic Behavior of Materials, Volume 1, 307–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95089-1_56.
Texto completoKim, Doo Soo, Byeong Yun Oh, Min Chang Jeong y Jae Min Myoung. "Characteristics of Al-Doped ZnO Transparent Conductive Oxide Films for Solar Cell Applications". En Solid State Phenomena, 131–34. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.131.
Texto completoPark, Sang Moo, Takashi Tomemori, Tomoaki Ikegami y Kenji Ebihara. "The Growth of Transparent Conductive Al-Doped ZnO Thin Films at Room Temperature". En Solid State Phenomena, 211–14. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.211.
Texto completoWright, O. B., T. Hyoguchi y K. Kawashima. "Laser Picosecond Interferometry in Double-Layer Transparent Films on Opaque Substrates". En Springer Series in Solid-State Sciences, 463–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_180.
Texto completoActas de conferencias sobre el tema "Transparent solids"
Mitrofanov, Alexander V., Aart J. Verhoef, Evgenii E. Serebryannikov, Julien Lumeau, Leonid Glebov, Alexey M. Zheltikov y Andrius Baltuska. "Attosecond Ionization Dynamics in Transparent Solids". En High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/hilas.2011.hwc2.
Texto completoGaizauskas, E., V. Kudriasov y V. Sirutkaitis. "Formation of multiple filaments in transparent solids". En International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1561175.
Texto completoWismer, Michael S., Mark I. Stockman y Vladislav S. Yakovlev. "Ultrafast optical Faraday effect in transparent solids". En 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086786.
Texto completoGamaly, E. G., S. Juodkazis, A. V. Rode, B. Luther-Davies y H. Misawa. "Recording and reading 3-D structures in transparent solids". En PICALO 2004: 1st Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5056139.
Texto completoMitrofanov, A. V., A. J. Verhoef, E. E. Serebryannikov, J. Lumeau, L. Glebov, A. M. Zheltikov y A. Baltuška. "Optical Detection of Attosecond Ionization Dynamics in Transparent Solids". En International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.fb2.
Texto completoGruzdev, Vitaly y Claude Phipps. "Laser-Induced Modification Of Energy Bands Of Transparent Solids". En INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER ABLATION 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3507096.
Texto completoGruzdev, Vitali E. y Anastasia S. Gruzdeva. "Formation and propagation of shock electromagnetic waves in transparent solids". En Advanced High-Power Lasers and Applications, editado por Claude R. Phipps y Masayuki Niino. SPIE, 2000. http://dx.doi.org/10.1117/12.376980.
Texto completoKoldunov, M. F., Alexander A. Manenkov y I. L. Pocotilo. "Multishot laser damage in transparent solids: theory of accumulation effect". En Laser-Induced Damage in Optical Materials: 1994, editado por Harold E. Bennett, Arthur H. Guenther, Mark R. Kozlowski, Brian E. Newnam y M. J. Soileau. SPIE, 1995. http://dx.doi.org/10.1117/12.213770.
Texto completoGruzdev, Vitali E. y Vladimir L. Komolov. "Laser-induced damage of transparent solids by femtosecond laser pulses". En Boulder Damage Symposium XXXVI, editado por Gregory J. Exarhos, Arthur H. Guenther, Norbert Kaiser, Keith L. Lewis, M. J. Soileau y Christopher J. Stolz. SPIE, 2005. http://dx.doi.org/10.1117/12.585170.
Texto completoWard, Hélène y Luc Bergé. "Time shaping of self-guided femtosecond pulses in transparent solids". En Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/nlgw.2002.pd2.
Texto completoInformes sobre el tema "Transparent solids"
Vu, Brian Tinh Van. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses. Office of Scientific and Technical Information (OSTI), febrero de 1994. http://dx.doi.org/10.2172/10167153.
Texto completoFajardo, Mario E. y Simon Tam. Rapid Vapor Deposition of Millimeters Thick Optically Transparent Solid Parahydrogen Samples for Matrix Isolation Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1997. http://dx.doi.org/10.21236/ada398027.
Texto completoBockstaller, Michael. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting. Office of Scientific and Technical Information (OSTI), febrero de 2017. http://dx.doi.org/10.2172/1342512.
Texto completoMelanie, Haupt y Hellweg Stefanie. Synthesis of the NRP 70 joint project “Waste management to support the energy turnaround (wastEturn)”. Swiss National Science Foundation (SNSF), enero de 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.2.en.
Texto completoMartin, Noémie y Pierre-Olivier Pineau. Choosing to Pay More for Electricity: an experiment on the level of residential consumer cooperation. CIRANO, junio de 2022. http://dx.doi.org/10.54932/xdvi6385.
Texto completoDiop, Ahmed. Country Diagnostic Study – Senegal. Islamic Development Bank Institute, octubre de 2021. http://dx.doi.org/10.55780/rp21003.
Texto completo