Literatura académica sobre el tema "Virus de la maladie de Borna"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Virus de la maladie de Borna".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Virus de la maladie de Borna"
Brugère-Picoux, Jeanne, Lise Bode, Antoine Del Sole y Hans Ludwig. "Identification du virus de la maladie de Borna en France". Bulletin de l'Académie Vétérinaire de France, n.º 1 (2000): 411. http://dx.doi.org/10.4267/2042/62761.
Texto completoScordel, Chloé y Muriel Coulpier. "La phosphoprotéine P du virus de la maladie de Borna altère le développement des neurones GABAergiques humains". médecine/sciences 31, n.º 12 (diciembre de 2015): 1060–63. http://dx.doi.org/10.1051/medsci/20153112003.
Texto completoHornig, Mady, Thomas Briese y W. Ian Lipkin. "Borna Disease Virus". Journal of Neurovirology 9, n.º 2 (enero de 2003): 259–73. http://dx.doi.org/10.1080/13550280390194064.
Texto completoJordan, Ingo y W. Ian Lipkin. "Borna disease virus". Reviews in Medical Virology 11, n.º 1 (enero de 2001): 37–57. http://dx.doi.org/10.1002/rmv.300.
Texto completoAmsterdam, Jay D. "Borna Disease Virus". Archives of General Psychiatry 42, n.º 11 (1 de noviembre de 1985): 1093. http://dx.doi.org/10.1001/archpsyc.1985.01790340077011.
Texto completoHenkel, Marco, Oliver Planz, Timo Fischer, Lothar Stitz y Hanns-Joachim Rziha. "Prevention of Virus Persistence and Protection against Immunopathology after Borna Disease Virus Infection of the Brain by a Novel Orf Virus Recombinant". Journal of Virology 79, n.º 1 (1 de enero de 2005): 314–25. http://dx.doi.org/10.1128/jvi.79.1.314-325.2005.
Texto completoKerr, Cathel. "Borna disease virus and depression". Trends in Microbiology 9, n.º 9 (septiembre de 2001): 414. http://dx.doi.org/10.1016/s0966-842x(01)02197-7.
Texto completoTaieb, O., J. M. Baleyte, P. Mazet y A. M. Fillet. "Borna disease virus and psychiatry". European Psychiatry 16, n.º 1 (febrero de 2001): 3–10. http://dx.doi.org/10.1016/s0924-9338(00)00529-0.
Texto completoWaltrip, Royce W., Robert W. Buchanan, Ann Summerfelt, Alan Breier, William T. Carpenter, Nancy L. Bryant, Steven A. Rubin y Kathryn M. Carbone. "Borna disease virus and schizophrenia". Psychiatry Research 56, n.º 1 (enero de 1995): 33–44. http://dx.doi.org/10.1016/0165-1781(94)02600-n.
Texto completoStaeheli, Peter, Christian Sauder, Jürgen Hausmann, Felix Ehrensperger y Martin Schwemmle. "Epidemiology of Borna disease virus". Journal of General Virology 81, n.º 9 (1 de septiembre de 2000): 2123–35. http://dx.doi.org/10.1099/0022-1317-81-9-2123.
Texto completoTesis sobre el tema "Virus de la maladie de Borna"
Dauphin, Gwenaëlle. "Développement d'outils sérologiques et moléculaires pour le diagnostic et l'étude de la prévalence de la maladie de Borna en France". Lyon 1, 2003. http://www.theses.fr/2003LYO1T065.
Texto completoVolmer, Romain. "Physiopathologie de l'infection par le virus de Borna". Paris 7, 2005. http://www.theses.fr/2005PA077217.
Texto completoBorna Disease Virus (BDV) is a negative, non-segmented single stranded RNA virus that causes a persistent infection of the central nervous System (CNS) in a wide variety of mammals, leading to behavioral disorders. BDV is a well known pathogen in veterinary medicine and epidemiological evidence suggests that BDV, or a BDV-like virus, could also infect humans. During this thesis, we first aimed to study the mechanism of action and the antiviral properties of nucleoside analogs against BDV. Our results show that 1-beta-D-arabinofuranosylcytosine acts as competitive inhibitor of BDV, probably at the level of the viral polymerase. We have also identified the nucleoside analog 2’-fluoro-2'-deoxycytidine (2'-FdC), a nucleoside analog that exhibits potent antiviral activity against BDV. Importantly, 2'-FdC-associated cytotoxicity is negligible, indicating 2'-FdC as an excellent candidate for the development of antiviral therapy against BDV. The second goal of this thesis was to clarify the cellular and molecular bases for the behavioral alterations associated with BDV persistence in the CNS. Since BDV is non-cytolytic, we have hypothesized that these symptoms could be due to an impairment of synaptic transmission in infected neurons. We report that BDV does not affect spontaneous or evoked vesicular cycling. Interestingly, BDV selectively blocks activity-dependent potentiation of SV recycling. This blockade is linked to an interference with protein kinase C (PKC) signaling. In order to study the electrophysiological properties of BDV infected neurons, we have recorded the electrical activity of cortical neurons grown of multi-electrode arrays. This study supports our conclusions that BDV does not alter neuronal activity under basai conditions, but selectively blocks long term potentiation of neuronal network activity
Scordel, Chloé. "Identification des déterminants viraux et mécanismes moléculaires impliqués dans l’interférence du virus de la maladie de Borna avec la neurogenèse humaine". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114849.
Texto completoBorna disease virus (BDV) is a persistent neurotropic virus causing neurobehavioral disorders in animals and possibly humans. Using human neural progenitor cells, it had been shown, before my arrival in the laboratory, that BDV induces an alteration in human neurogenesis. Here, we aimed at identifying the viral determinants involved in BDV-induced impairment of neurogenesis and at characterizing the underlying molecular mechanisms. We demonstrated that the phosphoprotein (P) and the nucleoprotein (N), but not the X protein, reduce neurogenesis. Focusing on the role of P, we evidenced an impairment of GABAergic neurogenesis. Then, seeking for the molecular mechanisms responsible for P-induced inhibition of neurogenesis, we showed that it induces a decrease in the expression of cellular factors involved in either neuronal specification (ApoE, Noggin) or maturation (SCG10/Stathmin, TH). Thus, in this study, we demonstrated for the first time that a viral protein is capable of inhibiting GABAergic neurogenesis, a process that is dysregulated in some psychiatric diseases. Our results improve our understanding of the pathogenesis of this persistent neurotropic virus and of its possible role in psychiatric disorders
Tournezy, Jeflie. "Etude des effets thérapeutiques de la protéine X du virus Borna chez la souris SOD1G93". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0298.
Texto completoToday, Amyotrophic Lateral Sclerosis (ALS) remains an incurable disease for which therapeutic trials have been unsuccessful. It is therefore essential to propose new therapeutic approaches that would slow the progression of the disease and prolong patient survival.Among the pathophysiological characteristics described, mitochondrial dysfunctions are one of the earliest events and could be the origin of the progressive loss of motor neurons. Restoring mitochondrial functions could therefore constitute a therapeutic area of interest to develop new therapies against this disease.With this in mind, we were interested in the X protein of the Bornavirus (BDV for Borna Disease Virus). When it targets mitochondria, the X protein inhibits the apoptosis of neurons and protects them from degeneration in an animal model of Parkinson's disease (Szelechowski et al., 2014). This neuroprotective action of the X protein resides in its last 29 carboxy-terminal amino acids which constitute the PX3 peptide. In addition, a modification to increase the mitochondrial localization of the protein X (XA4 protein) has shown improved neuroprotective effects in vitro.This thesis aimed to propose a new preclinical therapeutic approach, consisting in protecting motor neurons by using the neuroprotective properties of the Bornavirus X protein.First, we tested the neuroprotective effects of the X protein and its derived peptide PX3 in a well-characterized model of ALS, the SOD1G93A mice. Administration of the PX3 intranasally and the X intramuscularly via a viral vector (CAV2-X) slowed the progression of the disease and increased the survival of lumbar motor neurons. However, this treatment did not increase the life expectancy of the mice.Then, we used adeno-associated viruses (AAV) as gene transfer tools. More specifically, we used AAV serotype 10 (AAV10) to administer the gene encoding the X protein (AAV10-X) or its modified form, the XA4 protein (AAV10-XA4) to SOD1G93A mice. We evaluated the effects of these treatments on motor performances, life span, denervation of the neuromuscular junction, and preservation of lumbar and phrenic motor neurons (motor neurons innervating the diaphragm). Our results show that the X and XA4 proteins slowed the degeneration of lumbar motor neurons. Furthermore, while the X protein delayed the onset of motor deficits, the XA4 protein extended the life expectancy of the animals. The maintenance of motor performances in mice treated with X protein was associated with better preservation of the neuromuscular junction compared to untreated SOD1G93A mice.In addition, the administration of X or XA4 proteins to SOD1G93A mice blocks the degeneration of phrenic motor neurons, allowing them to return to values similar to the wild-type group.Although further investigations are needed to better understand the mechanisms involved in the effects of these proteins, our work demonstrates their certain therapeutic effects, on the extension of the life span, on the preservation of the neuromuscular junction, and the limitation of the degeneration of the spinal motor neurons. These studies open a new therapeutic avenue against ALS
Chimpolo, Maria M. "Borna disease virus: a UK perspective". Thesis, Northumbria University, 2006. http://nrl.northumbria.ac.uk/373/.
Texto completoOladele, Oluwafemi. "Characterization of feline borna disease virus /". Uppsala : Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/10454915.pdf.
Texto completoMa, Wenjun. "Studies on reverse genetic systems for avian influenza virus and the Borna disease virus". [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969806337.
Texto completoUnterstab, Gunhild. "Charakterisierung der viralen Genprodukte p10 und P des Borna Disease Virus". Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/690/.
Texto completoAls im Kern der Wirtszelle replizierendes Virus ist das Bornavirus auf zelluläre Importmechanismen angewiesen, um den Kernimport aller an der Replikation beteiligten viralen Proteine zu gewährleisten. Das p10 Protein ist ein negativer Regulator der viralen RNA-abhängigen RNA-Polymerase (L). In vitro Importexperimente zeigten, dass p10 über den klassischen Importin alpha/beta abhängigen Kernimportweg in den Nukleus transportiert wird. Dies war unerwartet, da p10 kein vorhersagbares klassisches Kernlokalisierungssignal (NLS) besitzt und weist darauf hin, dass der zelluläre Importapparat offensichtlich flexibler ist als allgemein angenommen. Die ersten 20 N-terminalen AS vermitteln sowohl Kernimport als auch die Bindung an den Importrezeptor Importin alpha. Durch Di-Alanin-Austauschmutagenese wurden die für diesen Transportprozess essentiellen AS identifiziert und die Bedeutung hydrophober und polarer AS-Reste demonstriert.
Die Fähigkeit des Bornavirus, persistente Infektionen zu etablieren, wirft die Frage auf, wie das Virus die zellulären antiviralen Abwehrmechanismen, insbesondere das Typ I Interferon (IFN)-System, unterwandert. Das virale P Protein wurde in dieser Arbeit als potenter Antagonist der IFN-Induktion charakterisiert. Es verhindert die Phosphorylierung des zentralen Transkriptionsfaktors IRF3 durch die zelluläre Kinase TBK1 und somit dessen Aktivierung. Der Befund, dass P mit TBK1 Komplexe bildet und zudem auch als Substrat für die zelluläre Kinase fungiert, erlaubt es, erstmalig einen Mechanismus zu postulieren, in dem ein virales Protein (BDV-P) als putatives TBK1-Pseudosubstrat die IRF3-Aktivierung kompetitiv hemmt.
The Borna Disease Virus (BDV) harbors a single stranded RNA genome of negative polarity. Within the order of Mononegavirales it is the prototype of a new virus family named Bornaviridae. Unique features of this neurotrope virus are its nuclear transcription and replication as well as its ability to establish persistent infections both in vivo and in vitro. The underlying mechanisms of BDV replication and persistence are currently not well understood amongst others due to the fact that BDV is quite a young virus: First complete sequences of the RNA genome have been published in 1994. Only a few months ago the generation of a recombinant Bornavirus from cloned cDNA has been accomplished.
The work presented here focused on the viral p10 protein and the phosphoprotein P that are both encoded by two overlapping reading frames of the transcription unit II.
Nuclear replication of the Bornavirus relies on cellular import mechanisms to allow for nuclear import of viral proteins involved in viral replication. The p10 protein has been described as a negative regulator of the viral RNA dependent RNA polymerase (L). In vitro import experiments revealed that p10 translocates into the nucleus via the classical importin alpha/beta; dependent pathway. This was unexpected since p10 does not contain a predictable classical nuclear localization signal (NLS) suggesting that the cellular import machinery is more flexible than generally believed. The first 20 amino acids mediate nuclear import and binding to the import receptor importin alpha. Analysis of di-alanine-exchange mutants identified essential amino acids and furthermore revealed the impact of hydrophobic and polar side chains in receptor binding and nuclear import.
The ability of the Bornavirus to establish persistent infections rises the question of how the virus circumvents cellular antiviral defense mechanisms, in particular the type I interferon system. This work characterizes the viral P protein as a potent antagonist of IFN beta induction. It prevents the activation of the central transcription factor IRF3 by interfering with the cellular kinase TBK1. The finding that P forms complexes with TBK1 and moreover serves as a kinase substrate allows to postulate a mechanism for the first time, in which a viral protein (BDV-P) acts as a putative TBK1 pseudo-substrate and thereby competitively inhibits IRF3 activation.
Fischer, Heike [Verfasser] y Bernd [Akademischer Betreuer] Heimrich. "Neuronaler Zelltod in organotypischen hippocampalen Schnittkulturen nach Borna Disease Virus Infektion". Freiburg : Universität, 2012. http://d-nb.info/1115490591/34.
Texto completoHerden, Christiane. "Untersuchungen zu Pathogenese, Neurotropismus und Persistenz des Virus der Bornaschen Krankheit". Giessen VVB Laufersweiler, 2009. http://d-nb.info/996020586/04.
Texto completoLibros sobre el tema "Virus de la maladie de Borna"
M, Carbone Kathryn, ed. Borna disease virus and its role in neurobehavioral disease. Washington, D.C: ASM Press, 2002.
Buscar texto completoBechter, Karl. Borna Disease Virus. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8.
Texto completoCarbone, Kathryn M., ed. Borna Disease Virus and its Role in Neurobehavioral Diseases. Washington, DC, USA: ASM Press, 2002. http://dx.doi.org/10.1128/9781555817909.
Texto completoBechter, K. Borna disease virus: Mögliche Ursachen neurologischer und psychiatrischer Störungen des Menschen. Darmstadt: Steinkopff, 1998.
Buscar texto completoCassuto, Jill-Patrice. SIDA et infection par le VIH. 3a ed. Paris: Masson, 1996.
Buscar texto completoLundgren, Anna-Lena. Borna disease virus infection in cats: On the etiopathogenesis of feline non-supperative meningoencephalomyelitis (staggering disease). Uppsala: Sveriges Lantbruksuniversitet, 1995.
Buscar texto completoLüschow, Dörte. Borna Disease Virus (BDV) - Infektionen und Erkrankungen bei Equiden: Serologische und molekularepidemiologische Untersuchungen mit phylogenetischen Stammbäumen. Herdecke: GCA-Verlag, 2000.
Buscar texto completoKelty, Christopher M. Ebola's ecologies. California]: Creative Commons, 2015.
Buscar texto completoCapítulos de libros sobre el tema "Virus de la maladie de Borna"
Ludwig, Hanns y Liv Bode. "Borna-Virus". En Lexikon der Infektionskrankheiten des Menschen, 99–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_133.
Texto completoHornig, Mady. "Borna Disease Virus". En Neurotropic Viral Infections, 315–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33133-1_13.
Texto completoBriese, T., W. I. Lipkin y J. C. de la Torre. "Molecular Biology of Borna Disease Virus". En Borna Disease, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78618-1_1.
Texto completoBechter, Karl. "Einleitung". En Borna Disease Virus, 1. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_1.
Texto completoBechter, Karl. "Danksagung". En Borna Disease Virus, 176–77. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_10.
Texto completoBechter, Karl. "Die Bornasche Krankheit beim Tier — Grundlagen der natürlichen Erkrankung und Ergebnisse experimenteller Untersuchungen". En Borna Disease Virus, 3–13. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_2.
Texto completoBechter, Karl. "Hypothese einer humanen BD". En Borna Disease Virus, 14–17. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_3.
Texto completoBechter, Karl. "Prävalenz von BDV-Serumantikörpern bei neurologischen und psychiatrischen Patienten und bei chirurgischen Kontrollen". En Borna Disease Virus, 18–27. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_4.
Texto completoBechter, Karl. "Spezielle klinische und epidemiologische Untersuchungen". En Borna Disease Virus, 28–81. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_5.
Texto completoBechter, Karl. "Diskussion". En Borna Disease Virus, 82–133. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-95999-8_6.
Texto completoActas de conferencias sobre el tema "Virus de la maladie de Borna"
MIRON, Liviu-Dan y Larisa IVĂNESCU. "The risk of vector-borne zoonotic disease transmission in the context of global warming". En "Instruire prin cercetare pentru o societate prosperă", conferinţă ştiinţifico-practică internaţională, 17–25. Ion Creangă Pedagogical State University, 2024. https://doi.org/10.46727/c.v1.16-17-05-2024.p17-25.
Texto completoLépine, M. y C. Herden. "Infektionskinetik des Borna Disease Virus 1 in organotypischen hippocampalen Schnittkulturen erwachsener Lewis-Ratten und Hausspitzmäusen". En 67. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1787347.
Texto completoVasilevich, F. I. y A. M. Nikanorova. "REVIEW OF MATHEMATICAL MODELING OF SOME NATURAL FOCAL DISEASES". En THEORY AND PRACTICE OF PARASITIC DISEASE CONTROL. VNIIP – FSC VIEV, 2024. http://dx.doi.org/10.31016/978-5-6050437-8-2.2024.25.79-83.
Texto completoOsei, Dominic, Eveline Baumgart-Vogt, Barbara Ahlemeyer y Christiane Herden. "Tumor necrosis factor receptor 1 mediates changes in mitochondrial and peroxisomal dynamics in neurons – a mechanism contributing to Borna disease virus 1 persistence in the brain". En 67. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1787350.
Texto completoInformes sobre el tema "Virus de la maladie de Borna"
Rohan, Hana. Analyse Situationnelle : Maladie à Virus Marburg en Guinée équatoriale et en Tanzanie. Institute of Development Studies, mayo de 2023. http://dx.doi.org/10.19088/sshap.2023.012.
Texto completoLamarque, Hugh. Considérations clés : Flambée épidémique de maladie à virus Marburg au Rwanda, octobre 2024. Institute of Development Studies, noviembre de 2024. http://dx.doi.org/10.19088/sshap.2024.057.
Texto completoRoth, Emmanuelle. Considérations clés : Flambée épidémique de virus Ébola en Guinée en 2021, le contexte de N’Zérékoré Synthèse. SSHAP, marzo de 2021. http://dx.doi.org/10.19088/sshap.2021.018.
Texto completoDuclos, Diane y Hayley Macgregor. Compte-rendu de réunion : Mpox et discrimination en Afrique. Institute of Development Studies, octubre de 2024. http://dx.doi.org/10.19088/sshap.2024.053.
Texto completoLignes directrices pour le contrôle et la prévention de la peste des petits ruminants (PPR) dans les populations de faune sauvage. OIE (World Organisation for Animal Health), diciembre de 2021. http://dx.doi.org/10.20506/ppr.3274.
Texto completo