Literatura académica sobre el tema "Wavelet approximation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Wavelet approximation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Wavelet approximation"
Polanowski, Stanisław. "Application of movable approximation and wavelet decomposition to smoothing-out procedure of ship engine indicator diagrams". Polish Maritime Research 14, n.º 2 (1 de abril de 2007): 12–17. http://dx.doi.org/10.2478/v10012-007-0008-y.
Texto completoBANAKAR, AHMAD, MOHAMMAD FAZLE AZEEM y VINOD KUMAR. "COMPARATIVE STUDY OF WAVELET BASED NEURAL NETWORK AND NEURO-FUZZY SYSTEMS". International Journal of Wavelets, Multiresolution and Information Processing 05, n.º 06 (noviembre de 2007): 879–906. http://dx.doi.org/10.1142/s0219691307002099.
Texto completoRomanchak, V. M. "Local transformations with a singular wavelet". Informatics 17, n.º 1 (29 de marzo de 2020): 39–46. http://dx.doi.org/10.37661/1816-0301-2020-17-1-39-46.
Texto completoRomanchak, V. M. "APPROXIMATELY SINGULAR WAVELET". «System analysis and applied information science», n.º 2 (7 de agosto de 2018): 23–28. http://dx.doi.org/10.21122/2309-4923-2018-2-23-28.
Texto completoTahami, M., A. Askari Hemmat y S. A. Yousefi. "Numerical solution of two-dimensional first kind Fredholm integral equations by using linear Legendre wavelet". International Journal of Wavelets, Multiresolution and Information Processing 14, n.º 01 (enero de 2016): 1650004. http://dx.doi.org/10.1142/s0219691316500041.
Texto completoKhanna, Nikhil, Varinder Kumar y S. K. Kaushik. "Wavelet packet approximation". Integral Transforms and Special Functions 27, n.º 9 (6 de junio de 2016): 698–714. http://dx.doi.org/10.1080/10652469.2016.1189912.
Texto completoGuo, Shun Sheng y A. S. Cavaretta. "LINEAR WAVELET APPROXIMATION". Analysis 13, n.º 4 (diciembre de 1993): 351–62. http://dx.doi.org/10.1524/anly.1993.13.4.351.
Texto completoDeVore, R. A., S. V. Konyagin y V. N. Temlyakov. "Hyperbolic Wavelet Approximation". Constructive Approximation 14, n.º 1 (1 de enero de 1997): 1–26. http://dx.doi.org/10.1007/s003659900060.
Texto completoPourakbari, Fatemeh y Ali Tavakoli. "Modification of Multiple Knot B-Spline Wavelet for Solving (Partially) Dirichlet Boundary Value Problem". Advances in Applied Mathematics and Mechanics 4, n.º 06 (diciembre de 2012): 799–820. http://dx.doi.org/10.4208/aamm.12-12s10.
Texto completoCattani, Carlo y Aleksey Kudreyko. "Application of Periodized Harmonic Wavelets towards Solution of Eigenvalue Problems for Integral Equations". Mathematical Problems in Engineering 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/570136.
Texto completoTesis sobre el tema "Wavelet approximation"
Li, Zheng. "Approximation to random process by wavelet basis". View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318378.
Texto completoMartin, Richard Luis. "Wavelet approximation of GRID fields for virtual screening". Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531509.
Texto completoSchreiner, Michael [Verfasser]. "Wavelet Approximation by Spherical Up Functions / Michael Schreiner". Aachen : Shaker, 2004. http://d-nb.info/1170537413/34.
Texto completoLee, Sang-Mook. "Wavelet-Based Multiresolution Surface Approximation from Height Fields". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/26203.
Texto completoPh. D.
Grip, Niklas. "Wavelet and gabor frames and bases : approximation, sampling and applications". Doctoral thesis, Luleå, 2002. http://epubl.luth.se/1402-1544/2002/49.
Texto completoZhanlav, Tugal. "Some choices of moments of refinable function and applications". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601316.
Texto completoTrisiripisal, Phichet. "Image Approximation using Triangulation". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33337.
Texto completoMaster of Science
Hartmann, Christoph [Verfasser] y Stephan [Akademischer Betreuer] Dahlke. "The p-Poisson Equation: Regularity Analysis and Adaptive Wavelet Frame Approximation / Christoph Hartmann ; Betreuer: Stephan Dahlke". Marburg : Philipps-Universität Marburg, 2018. http://d-nb.info/1168380103/34.
Texto completoPoungponsri, Suranai. "An Approach Based On Wavelet Decomposition And Neural Network For ECG Noise Reduction". DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/101.
Texto completoSilveira, Tiago da. "DETECÇÃO DO ESTADO DE SONOLÊNCIA VIA UM ÚNICO CANAL DE ELETROENCEFALOGRAFIA ATRAVÉS DA TRANSFORMADA WAVELET DISCRETA". Universidade Federal de Santa Maria, 2012. http://repositorio.ufsm.br/handle/1/5407.
Texto completoMany fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic drowsiness detection devices are an alternative to minimize this issue. In this work, two new methodologies to drowsiness detection are presented, considering a signal obtained from a single electroencephalography channel: (i) drowsiness detection through best m-term approximation, applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection through Mahalanobis distance with wavelet coefficients. The results of both methodologies are compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness detection. All methodologies consider the medical evaluation of the brain signal, given by the hypnogram, as a reference.
A sonolência diurna em motoristas, principal consequência da privação de sono, tem sido a causa de diversos acidentes graves de trânsito. Neste contexto, a utilização de dispositivos que alertem o condutor ao detectar automaticamente o estado de sonolência é uma alternativa para a minimização deste problema. Neste trabalho, duas novas metodologias para a detecção automática da sonolência são apresentadas, utilizando um único canal de eletroencefalografia para a obtenção do sinal: (i) detecção da sonolência via melhor aproximação por m-termos, aplicada aos coeficientes wavelets da expansão em série do sinal; e (ii) detecção da sonolência via distância de Mahalanobis e coeficientes wavelets. Os resultados de ambas as metodologias são comparados a uma implementação utilizando distância de Mahalanobis e coeficientes de Fourier. Para todas as metodologias, utiliza-se como referência a avaliação médica do sinal cerebral, dada pelo hipnograma.
Libros sobre el tema "Wavelet approximation"
Liandrat, J. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1990.
Buscar texto completoMichel, Volker. Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Boston: Birkhäuser Boston, 2013.
Buscar texto completoSingh, S. P., ed. Approximation Theory, Wavelets and Applications. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8577-4.
Texto completoHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard y Alexander Tsybakov. Wavelets, Approximation, and Statistical Applications. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4.
Texto completo1963-, Christensen Khadija Laghrida, ed. Approximation theory: From wavelets to polynomials. Boston: Birkhäuser, 2004.
Buscar texto completoChristensen, Ole. Approximation Theory: From Taylor Polynomials to Wavelets. Boston, MA: Birkhäuser, 2005.
Buscar texto completoOyet, Alwell J. Robust designs for wavelet approximations of regression models. Toronto: University of Toronto, Dept. of Statistics, 1997.
Buscar texto completoJerri, Abdul J. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston, MA: Springer US, 1998.
Buscar texto completoJerri, Abdul J. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2847-7.
Texto completoJerri, Abdul J. The Gibbs phenomenon in Fourier analysis, splines, and wavelet approximations. Dordrecht: Kluwer Academic Publishers, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Wavelet approximation"
Resnikoff, Howard L. y Raymond O. Wells. "Wavelet Approximation". En Wavelet Analysis, 202–35. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0593-7_9.
Texto completoLin, E. B. "Wavelet Transforms and Wavelet Approximations". En Approximation, Probability, and Related Fields, 357–65. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2494-6_27.
Texto completoMichel, Volker. "Spherical Wavelet Analysis". En Lectures on Constructive Approximation, 183–238. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8403-7_7.
Texto completoAnastassiou, G. A., S. T. Rachev y X. M. Yu. "Multivariate Probabilistic Wavelet Approximation". En Approximation, Probability, and Related Fields, 65–73. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2494-6_4.
Texto completoKunoth, Angela. "Optimized wavelet preconditioning". En Multiscale, Nonlinear and Adaptive Approximation, 325–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03413-8_10.
Texto completoAnastassiou, George A. "FUZZY WAVELET LIKE OPERATORS". En Fuzzy Mathematics: Approximation Theory, 191–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11220-1_12.
Texto completoHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard y Alexander Tsybakov. "Wavelet thresholding and adaptation". En Wavelets, Approximation, and Statistical Applications, 193–213. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4_11.
Texto completoHärdle, Wolfgang, Gerard Kerkyacharian, Dominique Picard y Alexander Tsybakov. "Construction of wavelet bases". En Wavelets, Approximation, and Statistical Applications, 47–58. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2222-4_6.
Texto completoMaass, Peter. "Wideband Approximation and Wavelet Transform". En Radar and Sonar, 83–88. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4684-7832-7_8.
Texto completoAnastassiou, George A. "Convex Probabilistic Wavelet Like Approximation". En Intelligent Mathematics: Computational Analysis, 13–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17098-0_2.
Texto completoActas de conferencias sobre el tema "Wavelet approximation"
Wolnik, Barbara. "The wavelet type systems". En Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-26.
Texto completoZhang, Q. y A. Benveniste. "Approximation by nonlinear wavelet networks". En [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.150188.
Texto completoSvenson, T. D., Jo A. Ward y K. J. Harrison. "Uniform approximation of wavelet coefficients". En SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, editado por Michael A. Unser, Akram Aldroubi y Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255231.
Texto completoWale, Sachin S. y Vinayak G. Asutkar. "Evaluation of wavelet connection coefficients by wavelet-Galerkin approximation". En 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030425.
Texto completoKida, Takuro y Yuichi Kida. "Optimum interpolatory approximation in wavelet subspace". En SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Michael A. Unser, Akram Aldroubi y Andrew F. Laine. SPIE, 1999. http://dx.doi.org/10.1117/12.366808.
Texto completoBernard, Christophe P., Stephane G. Mallat y Jean-Jeacques E. Slotine. "Wavelet interpolation networks for hierarchical approximation". En SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Michael A. Unser, Akram Aldroubi y Andrew F. Laine. SPIE, 1999. http://dx.doi.org/10.1117/12.366782.
Texto completoWirasaet, Damrongsak y Samuel Paolucci. "Application of an Adaptive Wavelet Method to Natural-Convection Flow in a Differentially Heated Cavity". En ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72864.
Texto completoHui Cheng, Chi Lu, Hai Han y Jin-Wen Tian. "Multiscale wavelet support vector machine for image approximation". En International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR '07. IEEE, 2007. http://dx.doi.org/10.1109/icwapr.2007.4421656.
Texto completoOltean, Gabriel, Laura-Nicoleta Ivanciu y Botond Kirei. "Signal approximation using GA guided wavelet decomposition". En 2015 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2015. http://dx.doi.org/10.1109/isscs.2015.7203996.
Texto completoCisar, Petar y Sanja Maravic Cisar. "Approximation of Internet traffic in wavelet domain". En 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY 2014). IEEE, 2014. http://dx.doi.org/10.1109/sisy.2014.6923563.
Texto completoInformes sobre el tema "Wavelet approximation"
Madych, Wolodymyr y K. Grochenig. Multivariate Wavelet Representations and Approximations. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1994. http://dx.doi.org/10.21236/ada290147.
Texto completoMadych, Wolodymyr. Multivariate Wavelet Representations and Approximations. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada269350.
Texto completo