Littérature scientifique sur le sujet « Plant proteins Genetic aspects »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Plant proteins Genetic aspects ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Plant proteins Genetic aspects"
Pandey, Sona. « Plant receptor-like kinase signaling through heterotrimeric G-proteins ». Journal of Experimental Botany 71, no 5 (13 janvier 2020) : 1742–51. http://dx.doi.org/10.1093/jxb/eraa016.
Texte intégralTichá, Tereza, Despina Samakovli, Anna Kuchařová, Tereza Vavrdová et Jozef Šamaj. « Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development ». Journal of Experimental Botany 71, no 14 (7 avril 2020) : 3966–85. http://dx.doi.org/10.1093/jxb/eraa177.
Texte intégralSoyano, Takashi, Masaki Ishikawa, Ryuichi Nishihama, Satoshi Araki, Mayumi Ito, Masaki Ito et Yasunori Machida. « Control of plant cytokinesis by an NPK1–mediated mitogen–activated protein kinase cascade ». Philosophical Transactions of the Royal Society of London. Series B : Biological Sciences 357, no 1422 (29 juin 2002) : 767–75. http://dx.doi.org/10.1098/rstb.2002.1094.
Texte intégralLi, Lei, et Detlef Weigel. « One Hundred Years of Hybrid Necrosis : Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions ». Annual Review of Phytopathology 59, no 1 (25 août 2021) : 213–37. http://dx.doi.org/10.1146/annurev-phyto-020620-114826.
Texte intégralFrolova, T. S., V. A. Cherenko, O. I. Sinitsyna et A. V. Kochetov. « Genetic aspects of potato resistance to phytophthorosis ». Vavilov Journal of Genetics and Breeding 25, no 2 (29 avril 2021) : 164–70. http://dx.doi.org/10.18699/vj21.020.
Texte intégralHadi, Joshua, et Gale Brightwell. « Safety of Alternative Proteins : Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein ». Foods 10, no 6 (28 mai 2021) : 1226. http://dx.doi.org/10.3390/foods10061226.
Texte intégralDziechciarková, M., A. Lebeda, I. Doležalová et D. Astley. « Characterization of Lactuca spp. germplasm by protein and molecular markers &ndash ; a review ». Plant, Soil and Environment 50, No. 2 (21 novembre 2011) : 47–58. http://dx.doi.org/10.17221/3680-pse.
Texte intégralKayser, Oliver. « Ethnobotany and Medicinal Plant Biotechnology : From Tradition to Modern Aspects of Drug Development ». Planta Medica 84, no 12/13 (24 mai 2018) : 834–38. http://dx.doi.org/10.1055/a-0631-3876.
Texte intégralSluse, Francis E., et Wieslawa Jarmuszkiewicz. « Uncoupling proteins outside the animal and plant kingdoms : functional and evolutionary aspects ». FEBS Letters 510, no 3 (6 décembre 2001) : 117–20. http://dx.doi.org/10.1016/s0014-5793(01)03229-x.
Texte intégralTripathy, Manas K., Renu Deswal et Sudhir K. Sopory. « Plant RABs : Role in Development and in Abiotic and Biotic Stress Responses ». Current Genomics 22, no 1 (12 avril 2021) : 26–40. http://dx.doi.org/10.2174/1389202922666210114102743.
Texte intégralThèses sur le sujet "Plant proteins Genetic aspects"
Singh, Nagendra Kumar. « The structure and genetic control of endosperm proteins in wheat and rye ». Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phs6174.pdf.
Texte intégralCheung, Wai-ying, et 張慧盈. « Characterization of plant homeodomain finger protein 11 (PHF11), a candidate tumor suppressor, in esophageal squamous cell carcinoma ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B50162834.
Texte intégralpublished_or_final_version
Clinical Oncology
Master
Master of Philosophy
Maree, H. J. (Hans Jacob). « The expression of Dianthin 30, a ribosome inactivating protein ». Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53633.
Texte intégralENGLISH ABSTRACT: Ribosome inactivating proteins (RIPs) are currently classified as rRNA N-glycosidases, but also have polynucleotide: adenosine glycosidase activity. RIPs are believed to have anti-viral and anti-fungal properties, but the exact mechanism of these proteins still need to be elucidated.The mechanism of resistance however, appears to be independent of the pathogen. For resistance the RIP terminates virus infected plant cells and stops the reproduction and spread of the virus. Transgenic plants containing RIPs should thus be resistant to a wide range of viruses. The ultimate goal of the larger project of which this forms part is the development of virus resistant plants. To monitor the expression of a RIP in a transgenic plant a detection method had to be developed. Antibody detection of the RIP was decided upon as the most cost effective method. The RIP, Dianthin 30 from Dianthus caryophyllus (carnation), was used and expressed in bacterial and insect expression systems. The bacterial expression experiments were done using the pET expression system in BL21(DE3)pLysS cells. The expression in this system yielded recombinant protein at a very low concentration. Expression experiments were also performed in insect tissue culture with the baculovirus vector BAC-TO-BAC™.With this system the expression was also too low to be used for the production of antibodies. A Dianthin 30 specific peptide was then designed and then produced by Bio-Synthesis. This peptide was then used to raise antibodies to detect Dianthin 30. These antibodies were tested on Dianthus caryophyllus proteins. To establish if this detection method was effective to monitor the expression in plants, tobacco plants were transformed with Agrobacterium tumefaciens containing Dianthin 30 in the pART27 plant expression vector. The putative transformed plants were analysed with peR and Southern blots.
AFRIKAANSE OPSOMMING: Tans word Ribosomale-inaktiverende proteïene (RIPs) geklassifiseer as rRNA N-glikosidase wat ook polinukleotied: adenosien glikosidase aktiwiteit bevat. Daar word geglo dat RIPs anti-virale en anti-fungus eienskappe bevat, maar die meganisme van beskerming word nog nie ten volle verstaan nie. Dit is wel bewys dat die meganisme van weerstand onafhanklik is van die patogeen. Virus geinfekteerde plantselle word deur die RIP gedood om die voortplanting en verspreiding te bekamp en sodoende word weerstand bewerkstellig. Transgeniese plante wat dan 'n RIP bevat sal dus weerstandbiedend wees teen 'n wye spektrum virusse. Die hoofdoel van die breër projek, waarvan die projek deel uitmaak: is die ontwikkeling van virusbestande plante. Om die uitdrukking van die RIP in die transgeniese plante te kontroleer, moes 'n deteksie metode ontwikkel word. Die mees koste effektiewe deteksie metode is met teenliggame. Die RIP, Dianthin 30 from Dianthus caryophyllus (angelier) was gebruik vir uitdrukking in bakteriele- en insekweefselkultuur. Die bakteriele uitdrukkingseksperimente was gedoen met die pET uitdrukkings sisteem III BL21(DE3)pLysS selle. Die uitdrukking in die sisteem het slegs rekombinante proteïene gelewer in uiters lae konsentrasies. Uitdrukkingseksperimente was ook gedoen in insekweefselkultuur met die baculovirus vektor BAC-To- BACTM. Met die sisteem was die uitdrukking ook veels te laag om bruikbaar te wees vir die produksie van teenliggame. Daar is toe 'n peptied ontwerp wat Dianthin 30 kan verteenwoordig vir die produksie van teenliggame. Die teenliggame is getoets teen Dianthus caryophyllus proteïene. Om vas te stel of die deteksiemetode wel die uitdrukking van Dianthin 30 sal kan monitor, is tabak ook getransformeer met Dianthin 30. Die transformasies is gedoen met die hulp van Agrobacterium tumefaciens en die pART27 plant uitdrukkings vektor. Die plante is getoets met die polimerase ketting reaksie en Southern klad tegnieke.
Joubert, Dirk Albert 1973. « Regulation of the Vitis vinifera PGIP1 gene encoding a polygalacturonase-inhibiting protein ». Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53759.
Texte intégralENGLISH ABSTRACT: Plant-pathogen interactions have been intensively investigated in the last decade. This major drive towards understanding the fundamental aspects involved in plant disease resistance is propelled by the obvious agricultural and economical benefits that are intrinsically linked to disease and stress resistant plants. It is, therefore, not surprising that fundamental research in this area is not just restricted to model organisms, such as Arabidopsis and tobacco, but also extends to more traditional crop plants, such as maize, bean, soybean, apples, grapevine etc. In grapevine for instance, several genes involved in disease resistance have been isolated. One of these genes, encoding for a polygalacturonase inhibiting protein (PGIP), has been studied extensively. PGIPs are cell wall bound, contain leucine rich repeats (LRR) and are found in all dicotyledonous plants so far examined. In most cases, pgip genes occur in small multigene families and expression is often tissue specific and developmentally regulated. Up-regulation of PGIP-encoding genes typically occurs upon pathogen infection, treatment with elicitors, salicylic acid (SA), jasmonic acid (JA), cold treatment and wounding. Differential regulation and specificity have been shown to occur between members of the same multigene family. Differential regulation even extends to the utilization of separate pathways to induce pgip genes from the same family in response to a single stress stimulus. PGIPs interact with cell wall macerating polygalacturonases (PGs) that are secreted by pathogenic fungi during the infection process. The antifungal action of PGIPs is thought to depend on a dual action. The physical interaction of PGIP with PGs has an inhibitionary effect, resulting in (i) a slower fungal infection rate and (ii) the prolonged existence of long chain oligogalacturonides (OGs). These oligosaccharides are able to elicit a general plant defense response, enabling the plant to further retard or curb the spread of infection. The main objective of this study was to investigate the regulatory aspects underlying PGIP expression in grapevine. Unlike most characterized PGIP encoding genes from other dicotyledonous plant species, no evidence to support the existence of a V. vinifera PGIP multigene family could be found from either genetic or biochemical analyses. Recently, a genomic DNA fragment from Vitis vinifera cv Pinotage was pathogen interactions with regards to the fundamental processes underlying defense gene regulation.
AFRIKAANSE OPSOMMING: Die ooglopende voordele wat, vanuit 'n landboukundige én ekonomiese oogpunt, uit siekte- en stresbestande plante spruit, het gedurende die laaste dekade aanleiding gegee tot die ontwikkeling van plantpatogeen-interaksies as "n baie belangrike studieveld. Dit was dus ook te verwagte dat fundamentele navorsing in hierdie area nie net beperk gebly het tot modelorganismes soos Arabidopsis en tabak (ook natuurlik van landboukundige belang) nie, maar ook na meer tradisionele landbougewasse soos mielies, boontjies, sojaboontjies, appels, druiwe, ens. oorgevloei het. Verskeie siekteweerstands-verwante gene is byvoorbeeld al vanuit wingerd geïsoleer. Een só "n geen wat vir "n poligalakturonase-inhiberende proteïen (PGIP) kodeer, vorm deel van hierdie groep gene. Die funksie en regulering van PGIP's is baie goed bestudeer. Hierdie proteïene word normaalweg in die selwande van die meeste dikotiele plante aangetref. Leusienryke herhalings is algemeen in PGIP's en hierdie tipe van herhalings is kenmerkend van proteïene betrokke by proteïen-proteïen-interaksies. Verder word pgip-gene gewoonlik in klein multigeenfamilies aangetref, waar in die meeste gevalle die uitdrukking weefselspesifiek en die regulering spesifiek ten opsigte van die ontwikkelingsfase is. Verskeie faktore kan tot die induksie van pgip-gene lei, soos onder andere patogeen-infeksie, elisitoor-, salisiensuur-, jasmoonsuur- en kouebehandeling, asook verwonding. Differensiële regulering word in baie gevalle tussen lede van dieselfde multigeenfamilie aangetref. Hierdie differensiële regulering kan selfs bemiddel word deur onafhanklike reguleringsweë in reaksie op dieselfde induksiestimulus. PGIP's is in staat om te reageer met poligalakturonases (PGs), wat selwande afbreek en wat gedurende die infeksieproses deur swamme of fungi afgeskei word. Die effek van hierdie interaksie is tweeledig: (i) Die fisiese interaksie tussen PGIP en PG moduleer die aktiwiteit van die PG deur die ensiemaksie te inhibeer, en (ii) PGinhibisie lei tot die verhoogde stabiliteit van langketting-oligogalakturonades, molekules wat daartoe in staat is om die weerstandsrespons van plante te ontlok. Die inhibisie van die patogeen-PG's, tesame met die geïnduseerde weerstandrespons, stel die plant dan in staat om verdere infeksie te vertraag of te verhoed. Die doel van hierdie studie was om die onderliggende aspekte van PGIPregulering in wingerd te bestudeer. In teenstelling met die meeste plantspesies waar pgip-gene in klein multigeenfamilies aangetref word, is daar nie 'n pgip-multigeenfamilie in wingerd nie. Veelvuldige kopieë van In enkele pgip-geen word egter in die wingerdgenoom aangetref. Daar is onlangs in ons laboratorium In genoom-DNAfragment vanaf Vitis vinifera cv Pinotage geïsoleer wat die oopleesraam en 5'-stroomopsekwense van In PGIP-enkoderende geen (Vvpgip1) bevat. In hierdie studie is die uitdrukkingspatroon van Vvpgip1 ten opsigte van weefselspesifisiteit, korrelontwikkelingsfase, asook die effek van verskeie omgewings en patogeenverwante stres-stimuli ontleed. Die regulatoriese meganismes van Vvpgip1 bevat spesifieke in planta-ontwikkelingsfaseseine wat verder deur spesifieke faktore, insluitende omgewings- en patogeenstres, gereguleer word. In lyn hiermee is mRNS-transkripte van Vvpgip1 tot wortel- en korrelweefsels beperk, terwyl die mRNS-vlakke ook tussen verskillende korrelontwikkelingsfases wissel. Kumulatiewe uitdrukking kon waargeneem word in veráison-korrels in reaksie op verwonding en osmotiese stres. Die weefselspesifieke uitdrukkingspatroon tipies van wingerd-PGIP is in blare opgehef in reaksie op Botrytis cinerea-infeksie, verwonding, osmotiese stres, ouksien (indoolasynsuur) en salisiensuur. PGIP-uitdrukking word ook onderdruk deur In staurosporien-sensitiewe proteïenkinase, wat In goeie aanduiding is van die betrokkenheid van proteïenfosforilasie in die seintransduksiekaskade wat tot PGIPuitdrukking aanleiding gee. Die geïnduseerde PGIP-uitdrukkingsprofiel in wingerdblare kan ook nageboots word in tabak wat met die Vvpgip1-geen en -promotor getransformeer is. PG-inhibisie-eksperimente met membraan-geassosieerde proteïenekstrakte van geïnduseerde wingerdblare het ook dieselfde profiel getoon as dié van PGIP wat deur die Vvpgip1-geen geënkodeer is. Die uitdrukkingsprofiel van PGIP in die transgeniese tabakplante het ook bewys dat die promotor van die Vvpgip1-geen vir die geïnduseerde PGIP-uitdrukkingsprofiel in wingerdblare verantwoordelik is. In silica-analise van die promotorarea dui op die teenwoordigheid van verskeie cis-werkende elemente. Die kern promotor en transkripsie-aanvangsgedeelte is gevolglik eksperimenteel bepaal. Verder het uitdrukkingseksperimente met promotorfragmente verskeie dele van die promotor geïdentifiseer wat by stimulis-geassosieerde uitdrukking betrokke is. Posisioneel is hierdie fragmente in goeie konteks met die voorspelde cis-werkende elemente en kan dus die basis vorm vir verdere studies oor Vvpgip-regulering. Met hierdie studie word die eerste data verskaf waar die regulering van PGIP deur omgewingsverwante faktore verbind kan word met onwikkelingspesifieke toestande in die plant. Verder verskaf die resultate verdere bewyse vir die rol van PGIP in plant-patogeen-interaksies en lewer spesifieke bydraes tot die onderliggende prosesse wat by die regulering van siekteweerstandverwante gene betrokke is.
Becker, John van Wyk. « Plant defence genes expressed in tobacco and yeast ». Thesis, Stellenbosch : University of Stellenbosch, 2002. http://hdl.handle.net/10019/2924.
Texte intégralSassi, Giovanna. « Relative quantification of host gene expression and protein accumulation upon turnip mosaic potyvirus infection in tobacco ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81433.
Texte intégralTobacco protein accumulation in whole leaf tissues was also significantly affected by increase of virus particles.
Ozumit, Alen. « Interaction between turnip mosaic potyvirus (TuMV) cylindrical inclusion protein and Arabidopsis thaliana histone H3 protein ». Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79060.
Texte intégralZhan, Ye. « Molecular analysis of turnip crinkle virus coat protein mutations ». Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0430102-142639.
Texte intégralPhelan, Thomas Joseph. « GENETIC AND MOLECULAR ANALYSIS OF PLANT NUCLEAR MATRIX PROTEINS ». NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011104-233111.
Texte intégralPHELAN, THOMAS JOSEPH, Genetic and Molecular Analysis of Plant Nuclear Matrix Proteins. (Under the direction of Steven L. Spiker.)The eukaryotic nucleus is composed of DNA, RNA and protein, encapsulated by a nuclear envelope. DNA is compacted up to ten thousand times in order to be packaged into the nucleus. The nucleus must maintain order in the presence of a very high density and variety of protein and RNA. The nuclear matrix is a proteinaceous network thought to provide structure and organization to the nucleus. We believe that relatively stable interactions of nuclear molecules with the nuclear matrix are key to organization of the nucleus. Numerous "Matrix Attachment Region" DNA elements (MARs), have been isolated from plants, animals, and fungi. Evidence suggests that these MARs attach to the nuclear matrix, delimiting loops of chromosomal DNA. In studies of transgenic plants and animals, MARs have been shown to give important advantages to organisms transformed with genes flanked by these elements. Unlike most DNA elements, no specific sequence elements have been identified in MAR DNAs. Partly due to the insolubility of the matrix, and to the heterogeneity of MAR DNA, very few of the protein components of the nuclear matrix have been identified. This work presents analysis the proteins of the plant nuclear matrix. We have characterized a set of related proteins from the model plant Arabidopsis that associate with MAR DNA in vitro. These proteins appear to be similar to the NOP56/NOP58 family of proteins previously identified in several eukaryotic organisms. The NOP56/NOP58 proteins are thought to be involved in modifications of ribosomal RNA. Binding studies presented in this work suggest that these plant proteins may participate in RNA/DNA/protein complexes in the nucleus.
Tan, Lor-Wai. « Biochemical aspects of self-incompatibility in Petunia hybrida ». Title page, Contents and Summary only, 1988. http://web4.library.adelaide.edu.au/theses/09A/09at161.pdf.
Texte intégralLivres sur le sujet "Plant proteins Genetic aspects"
Bharló, Gillian Ní. Cloning and characterisation of an Auxin-binding protein cDNA from apple. Dublin : University College Dublin, 1997.
Trouver le texte intégralInternational Symposium on Genetic Aspects of Plant Mineral Nutrition (4th 1991 Canberra, A.C.T.). Genetic aspects of plant mineral nutrition. Dordrecht : Kluwer Academic Publishers, 1993.
Trouver le texte intégralEl Bassam, N., M. Dambroth et B. C. Loughman, dir. Genetic Aspects of Plant Mineral Nutrition. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2053-8.
Texte intégralGabelman, W. H., et B. C. Loughman, dir. Genetic Aspects of Plant Mineral Nutrition. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5.
Texte intégralRandall, P. J., E. Delhaize, R. A. Richards et R. Munns, dir. Genetic Aspects of Plant Mineral Nutrition. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3.
Texte intégralInternational, Symposium on Genetic Aspects of Plant Mineral Nutrition (2nd 1985 Madison Wis ). Genetic aspects of plant mineral nutrition : Proceedings of the Second International Symposium on Genetic Aspects of Plant Mineral Nutrition. Dordrecht : M. Nijhoff, 1987.
Trouver le texte intégralJohn, King. The genetic basis of plant physiological processes. New York : Oxford University Press, 1991.
Trouver le texte intégralTodorov, I. N. Mechanisms of cell stability : Subcellular and molecular aspects. New York : Nova Science Publishers, 1994.
Trouver le texte intégralGuinivan, Phyllis. Selected abstracts on oncogene protein products. Bethesda, MD : U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, International Cancer Research Data Bank, National Cancer Institute, 1987.
Trouver le texte intégralGustavsson, Hans-Olof. Studies on the expression of the seed storage proteins napin and cruciferin from Brassica napus. Uppsala, Sweden : Swedish University of Agricultural Sciences, Uppsala Genetic Center, Dept. of Cell Research, 1994.
Trouver le texte intégralChapitres de livres sur le sujet "Plant proteins Genetic aspects"
Flowers, T. J., et D. Dalmond. « Protein synthesis in halophytes : The influence of potassium, sodium and magnesium in vitro ». Dans Genetic Aspects of Plant Mineral Nutrition, 195–203. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_25.
Texte intégralMemon, Abdul Razaque, et Anthony D. M. Glass. « Genotypic differences in subcellular compartmentation of K+ : Implications for protein synthesis, growth and yield ». Dans Genetic Aspects of Plant Mineral Nutrition, 323–29. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_30.
Texte intégralWang, Melan, et Katalin A. Hudak. « Applications of Plant Antiviral Proteins ». Dans Genetic Engineering, 143–61. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0073-5_7.
Texte intégralRobinson, C. « Targeting of proteins to chloroplasts and mitochondria ». Dans Plant Genetic Engineering, 179–98. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0403-3_6.
Texte intégralRobinson, C. « Targeting of proteins to chloroplasts and mitochondria ». Dans Plant Genetic Engineering, 179–98. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-010-9646-1_6.
Texte intégralPayne, Peter I. « Endosperm Proteins ». Dans A Genetic Approach to Plant Biochemistry, 207–31. Vienna : Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-6989-6_7.
Texte intégralKoornneef, Maarten. « Genetic Aspects of Abscisic Acid ». Dans A Genetic Approach to Plant Biochemistry, 35–54. Vienna : Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-6989-6_2.
Texte intégralHill, J., H. C. Becker et P. M. A. Tigerstedt. « Genetic resources, genetic diversity and ecogeographic breeding ». Dans Quantitative and Ecological Aspects of Plant Breeding, 235–67. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5830-5_9.
Texte intégralBos, Izak, et Peter Caligari. « Population genetic aspects of cross-fertilization ». Dans Selection Methods in Plant Breeding, 5–25. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8432-6_2.
Texte intégralRandhawa, G., J. Lyon, N. Harris, H. V. Davies et G. C. Machray. « Manipulation of Potato Tuber Protein Quality through Genetic Engineering ». Dans Plant Proteins from European Crops, 70–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03720-1_12.
Texte intégralActes de conférences sur le sujet "Plant proteins Genetic aspects"
Kholodnyak, Oleksandr, et Svitlana Pavlova. « THE CONSERVATION AND MANAGEMENT OF PLANT GENETIC RESOURCES ». Dans THEORETICAL AND PRACTICAL ASPECTS OF MODERN SCIENTIFIC RESEARCH. European Scientific Platform, 2021. http://dx.doi.org/10.36074/logos-30.04.2021.v1.38.
Texte intégral« Biochemical, molecular and genetic aspects of fruit ripening in green-fruited and red-fruited tomato species ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-179.
Texte intégralPuzansky, R. K., et M. F. Shishova. « Metabolomic and molecular genetic aspects of trophic adaptation of mutants Chlamydomonas reinhardtii ». Dans IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-366.
Texte intégralTyapkina, D. Yu, E. Z. Kochieva et M. A. Slugin. « Biochemical and molecular genetic aspects of the metabolism of L-ascorbic acid invarieties and wild species of tomato (Solanum sect. Lycopersicon) ». Dans IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-445.
Texte intégralTsyganov, V. E. « Symbiotic nodule development ». Dans 2nd International Scientific Conference "Plants and Microbes : the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.257.
Texte intégralRapports d'organisations sur le sujet "Plant proteins Genetic aspects"
Siedow, J. (Molecular studies of functional aspects of plant mitochondrial proteins) : (Annual performance report for 1988--1989). Office of Scientific and Technical Information (OSTI), janvier 1989. http://dx.doi.org/10.2172/5963065.
Texte intégral