Artykuły w czasopismach na temat „Β-amyloid structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Β-amyloid structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Taguchi, Yuzuru, Hiroki Otaki та Noriyuki Nishida. "Mechanisms of Strain Diversity of Disease-Associated in-Register Parallel β-Sheet Amyloids and Implications About Prion Strains". Viruses 11, № 2 (2019): 110. http://dx.doi.org/10.3390/v11020110.
Pełny tekst źródłaM Smith, Margaret, and James Melrose. "Amyloid, A Jekyll and Hyde Molecule, Induces Neuronal Decline and Cognitive Dysfunction but is also a Unique Molecular Template used in Nano-Electronics, Light Capture Photovoltaics, Biosensors and in Neuromorphic Computing." International Journal of Nanotechnology and Nanomedicine 9, no. 2 (2024): 01–13. http://dx.doi.org/10.33140/ijnn.09.02.02.
Pełny tekst źródłaChatani, Eri, Keisuke Yuzu, Yumiko Ohhashi, and Yuji Goto. "Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils." International Journal of Molecular Sciences 22, no. 9 (2021): 4349. http://dx.doi.org/10.3390/ijms22094349.
Pełny tekst źródłaPaulus, Agnes, Anders Engdahl, Yiyi Yang, et al. "Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer’s Disease." International Journal of Molecular Sciences 22, no. 7 (2021): 3430. http://dx.doi.org/10.3390/ijms22073430.
Pełny tekst źródłaSulatskaya, Anna I., Anastasiia O. Kosolapova, Alexander G. Bobylev та ін. "β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis". International Journal of Molecular Sciences 22, № 21 (2021): 11316. http://dx.doi.org/10.3390/ijms222111316.
Pełny tekst źródłaGao, Yang, Sophia Schedin-Weiss та Lars O. Tjernberg. "A closer look at pathogenic amyloid-β in Alzheimer’s disease using cryo-electron microscopy: a narrative review". Advanced Technology in Neuroscience 1, № 2 (2024): 177–87. http://dx.doi.org/10.4103/atn.atn-d-24-00014.
Pełny tekst źródłaAlperstein, Ariel M., Joshua S. Ostrander, Tianqi O. Zhang, and Martin T. Zanni. "Amyloid found in human cataracts with two-dimensional infrared spectroscopy." Proceedings of the National Academy of Sciences 116, no. 14 (2019): 6602–7. http://dx.doi.org/10.1073/pnas.1821534116.
Pełny tekst źródłaFreitas, Raul O., Adrian Cernescu, Anders Engdahl, et al. "Nano-Infrared Imaging of Primary Neurons." Cells 10, no. 10 (2021): 2559. http://dx.doi.org/10.3390/cells10102559.
Pełny tekst źródłaTycko, Robert. "Molecular structure of amyloid fibrils: insights from solid-state NMR." Quarterly Reviews of Biophysics 39, no. 1 (2006): 1–55. http://dx.doi.org/10.1017/s0033583506004173.
Pełny tekst źródłaYakupova, Elmira I., Liya G. Bobyleva, Sergey A. Shumeyko, Ivan M. Vikhlyantsev, and Alexander G. Bobylev. "Amyloids: The History of Toxicity and Functionality." Biology 10, no. 5 (2021): 394. http://dx.doi.org/10.3390/biology10050394.
Pełny tekst źródłaYu, Xiang, та Jie Zheng. "Polymorphic Structures of Alzheimer's β-Amyloid Globulomers". PLoS ONE 6, № 6 (2011): e20575. http://dx.doi.org/10.1371/journal.pone.0020575.
Pełny tekst źródłaFlynn, Jessica D., and Jennifer C. Lee. "Raman fingerprints of amyloid structures." Chemical Communications 54, no. 51 (2018): 6983–86. http://dx.doi.org/10.1039/c8cc03217c.
Pełny tekst źródłaMakshakova, Olga N., Liliya R. Bogdanova, Dzhigangir A. Faizullin, Elena A. Ermakova, and Yuriy F. Zuev. "Sulfated Polysaccharides as a Fighter with Protein Non-Physiological Aggregation: The Role of Polysaccharide Flexibility and Charge Density." International Journal of Molecular Sciences 24, no. 22 (2023): 16223. http://dx.doi.org/10.3390/ijms242216223.
Pełny tekst źródłaM Smith, Margaret, та James Melrose. "Advanced Innovative Amyloid Fibril Nanotechnological Applications: β-Sheet Proteins, Protein Aggregation, Cognitive Decline, Microbiome Regulated Tau Protein Release, Photo-Pharmacological Drug Regulation and Development of High Performance Surgical Adhesives". International Journal of Nanotechnology and Nanomedicine 9, № 2 (2024): 01–13. http://dx.doi.org/10.33140/ijnn.09.02.01.
Pełny tekst źródłaHewetson, Aveline, Nazmul H. Khan, Matthew J. Dominguez, et al. "Maturation of the functional mouse CRES amyloid from globular form." Proceedings of the National Academy of Sciences 117, no. 28 (2020): 16363–72. http://dx.doi.org/10.1073/pnas.2006887117.
Pełny tekst źródłaBalobanov, Vitalii, Rita Chertkova, Anna Egorova, Dmitry Dolgikh, Valentina Bychkova, and Mikhail Kirpichnikov. "The Kinetics of Amyloid Fibril Formation by de Novo Protein Albebetin and Its Mutant Variants." Biomolecules 10, no. 2 (2020): 241. http://dx.doi.org/10.3390/biom10020241.
Pełny tekst źródłaOkumura, Hisashi, та Satoru G. Itoh. "Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation". Molecules 27, № 8 (2022): 2483. http://dx.doi.org/10.3390/molecules27082483.
Pełny tekst źródłaWickner, Reed B., Herman K. Edskes, David A. Bateman, et al. "Amyloid diseases of yeast: prions are proteins acting as genes." Essays in Biochemistry 56 (August 18, 2014): 193–205. http://dx.doi.org/10.1042/bse0560193.
Pełny tekst źródłaLeVine, Harry. "Thioflavine T interaction with amyloid β-sheet structures". Amyloid 2, № 1 (1995): 1–6. http://dx.doi.org/10.3109/13506129509031881.
Pełny tekst źródłaFändrich, Marcus, Matthias Schmidt та Nikolaus Grigorieff. "Recent progress in understanding Alzheimer's β-amyloid structures". Trends in Biochemical Sciences 36, № 6 (2011): 338–45. http://dx.doi.org/10.1016/j.tibs.2011.02.002.
Pełny tekst źródłaXie, Longsheng, Christopher Lockhart, Steven R. Bowers, Dmitri K. Klimov та Mohsin Saleet Jafri. "Structural Analysis of Amylin and Amyloid β Peptide Signaling in Alzheimer’s Disease". Biomolecules 15, № 1 (2025): 89. https://doi.org/10.3390/biom15010089.
Pełny tekst źródłaGorman, Paul M., та Avijit Chakrabartty. "Alzheimer β-amyloid peptides: Structures of amyloid fibrils and alternate aggregation products". Biopolymers 60, № 5 (2001): 381. http://dx.doi.org/10.1002/1097-0282(2001)60:5<381::aid-bip10173>3.0.co;2-u.
Pełny tekst źródłaChimon, Sandra, Medhat A. Shaibat, Christopher R. Jones, Diana C. Calero, Buzulagu Aizezi та Yoshitaka Ishii. "Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid". Nature Structural & Molecular Biology 14, № 12 (2007): 1157–64. http://dx.doi.org/10.1038/nsmb1345.
Pełny tekst źródłaWillem, Michael, та Marcus Fändrich. "A molecular view of human amyloid-β folds". Science 375, № 6577 (2022): 147–48. http://dx.doi.org/10.1126/science.abn5428.
Pełny tekst źródłaDaskalov, Asen, Denis Martinez, Virginie Coustou, et al. "Structural and molecular basis of cross-seeding barriers in amyloids." Proceedings of the National Academy of Sciences 118, no. 1 (2020): e2014085118. http://dx.doi.org/10.1073/pnas.2014085118.
Pełny tekst źródłaRoterman, Irena, Katarzyna Stapor, and Leszek Konieczny. "Secondary Structure in Amyloids in Relation to Their Wild Type Forms." International Journal of Molecular Sciences 24, no. 1 (2022): 154. http://dx.doi.org/10.3390/ijms24010154.
Pełny tekst źródłaJara-Moreno, Daniela, Ana L. Riveros, Andrés Barriga, Marcelo J. Kogan та Carla Delporte. "Inhibition of β-amyloid Aggregation of Ugni molinae Extracts". Current Pharmaceutical Design 26, № 12 (2020): 1365–76. http://dx.doi.org/10.2174/1381612826666200113160840.
Pełny tekst źródłaTavanti, Francesco, Alfonso Pedone та Maria Cristina Menziani. "Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange Molecular Dynamics Simulations". International Journal of Molecular Sciences 22, № 1 (2020): 26. http://dx.doi.org/10.3390/ijms22010026.
Pełny tekst źródłaSerpell, Louise. "Amyloid structure." Essays in Biochemistry 56 (August 18, 2014): 1–10. http://dx.doi.org/10.1042/bse0560001.
Pełny tekst źródłaUrban, Jennifer M., Janson Ho, Gavin Piester, Riqiang Fu та Bradley L. Nilsson. "Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly". Molecules 24, № 10 (2019): 1983. http://dx.doi.org/10.3390/molecules24101983.
Pełny tekst źródłaPellegrino, S., N. Tonali, E. Erba та ін. "β-Hairpin mimics containing a piperidine–pyrrolidine scaffold modulate the β-amyloid aggregation process preserving the monomer species". Chemical Science 8, № 2 (2017): 1295–302. http://dx.doi.org/10.1039/c6sc03176e.
Pełny tekst źródłaTJERNBERG, Lars O., Agneta TJERNBERG, Niklas BARK та ін. "Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment". Biochemical Journal 366, № 1 (2002): 343–51. http://dx.doi.org/10.1042/bj20020229.
Pełny tekst źródłaMuvva, Charuvaka, Natarajan Arul Murugan, and Venkatesan Subramanian. "Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations." International Journal of Molecular Sciences 22, no. 6 (2021): 3244. http://dx.doi.org/10.3390/ijms22063244.
Pełny tekst źródłaFolmert, Kristin, Malgorzata Broncel, Hans v. Berlepsch, Christopher Hans Ullrich, Mary-Ann Siegert, and Beate Koksch. "Inhibition of peptide aggregation by means of enzymatic phosphorylation." Beilstein Journal of Organic Chemistry 12 (November 18, 2016): 2462–70. http://dx.doi.org/10.3762/bjoc.12.240.
Pełny tekst źródłaAlmeida, Zaida L., and Rui M. M. Brito. "Amyloid Disassembly: What Can We Learn from Chaperones?" Biomedicines 10, no. 12 (2022): 3276. http://dx.doi.org/10.3390/biomedicines10123276.
Pełny tekst źródłaWestlind-Danielsson, Anita, та Gunnel Arnerup. "Spontaneous in Vitro Formation of Supramolecular β-Amyloid Structures, “βamy Balls”, by β-Amyloid 1−40 Peptide†". Biochemistry 40, № 49 (2001): 14736–43. http://dx.doi.org/10.1021/bi010375c.
Pełny tekst źródłaMurakoshi, Yuko, Tsuyoshi Takahashi та Hisakazu Mihara. "Modification of a Small β-Barrel Protein, To Give Pseudo-Amyloid Structures, Inhibits Amyloid β-Peptide Aggregation". Chemistry - A European Journal 19, № 14 (2013): 4525–31. http://dx.doi.org/10.1002/chem.201202762.
Pełny tekst źródłaÁbrahám, Ágnes, Flavio Massignan, Gergő Gyulai, Miklós Katona, Nóra Taricska, and Éva Kiss. "Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms." International Journal of Molecular Sciences 23, no. 21 (2022): 13219. http://dx.doi.org/10.3390/ijms232113219.
Pełny tekst źródłaPusara, Srdjan. "Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides". International Journal of Molecular Sciences 25, № 9 (2024): 4660. http://dx.doi.org/10.3390/ijms25094660.
Pełny tekst źródłaTycko, Robert, Kimberly L. Sciarretta, Joseph P. R. O. Orgel та Stephen C. Meredith. "Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils". Biochemistry 48, № 26 (2009): 6072–84. http://dx.doi.org/10.1021/bi9002666.
Pełny tekst źródłaZhizhin, Gennadiy Vladimirovich. "On the Possible Spatial Structures of the β-Amyloid". International Journal of Applied Research on Public Health Management 7, № 1 (2022): 1–8. http://dx.doi.org/10.4018/ijarphm.290380.
Pełny tekst źródłaPham, Johnny D., Nicholas Chim, Celia W. Goulding та James S. Nowick. "Structures of Oligomers of a Peptide from β-Amyloid". Journal of the American Chemical Society 135, № 33 (2013): 12460–67. http://dx.doi.org/10.1021/ja4068854.
Pełny tekst źródłaMorris, Kyle L., Alison Rodger, Matthew R. Hicks, et al. "Exploring the sequence–structure relationship for amyloid peptides." Biochemical Journal 450, no. 2 (2013): 275–83. http://dx.doi.org/10.1042/bj20121773.
Pełny tekst źródłaLipke, Peter N., Marion Mathelié-Guinlet, Albertus Viljoen, and Yves F. Dufrêne. "A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds." Pathogens 10, no. 8 (2021): 1013. http://dx.doi.org/10.3390/pathogens10081013.
Pełny tekst źródłaSønderby, Thorbjørn Vincent, Zahra Najarzadeh, and Daniel Erik Otzen. "Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies." Molecules 27, no. 13 (2022): 4080. http://dx.doi.org/10.3390/molecules27134080.
Pełny tekst źródłaLee, Myungwoon, Tuo Wang, Olga V. Makhlynets, et al. "Zinc-binding structure of a catalytic amyloid from solid-state NMR." Proceedings of the National Academy of Sciences 114, no. 24 (2017): 6191–96. http://dx.doi.org/10.1073/pnas.1706179114.
Pełny tekst źródłaDiaferia, Carlo, Nicole Balasco, Davide Altamura, et al. "Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends." Soft Matter 14, no. 40 (2018): 8219–30. http://dx.doi.org/10.1039/c8sm01441h.
Pełny tekst źródłaLomarat, Pattamapan, Sirirat Chancharunee, Natthinee Anantachoke, Worawan Kitphati, Kittisak Sripha, and Nuntavan Bunyapraphatsara. "Bioactivity-guided Separation of the Active Compounds in Acacia Pennata Responsible for the Prevention of Alzheimer's Disease." Natural Product Communications 10, no. 8 (2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000830.
Pełny tekst źródłaFlores-Fernández, José, Vineet Rathod, and Holger Wille. "Comparing the Folds of Prions and Other Pathogenic Amyloids." Pathogens 7, no. 2 (2018): 50. http://dx.doi.org/10.3390/pathogens7020050.
Pełny tekst źródłaCohen, Mark L., Chae Kim, Tracy Haldiman та ін. "Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β". Brain 138, № 4 (2015): 1009–22. http://dx.doi.org/10.1093/brain/awv006.
Pełny tekst źródła