Artykuły w czasopismach na temat „3xtg-AD”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „3xtg-AD”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Al-Nakkash, Layla, Daniel Mason, Niamatullah Ismail, et al. "Exercise Training Prevents the Loss of Wall Thickness and Lowers Expression of Alzheimer’s Related Proteins in 3xTg Mouse Jejunum." International Journal of Environmental Research and Public Health 19, no. 21 (2022): 14164. http://dx.doi.org/10.3390/ijerph192114164.
Pełny tekst źródłaCross, Donna J., Bertrand R. Huber, Michael A. Silverman, et al. "Intranasal Paclitaxel Alters Alzheimer’s Disease Phenotypic Features in 3xTg-AD Mice." Journal of Alzheimer's Disease 83, no. 1 (2021): 379–94. http://dx.doi.org/10.3233/jad-210109.
Pełny tekst źródłaVárkonyi, Dorottya, Bibiána Török, Eszter Sipos, et al. "Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer’s Disease." International Journal of Molecular Sciences 23, no. 18 (2022): 10816. http://dx.doi.org/10.3390/ijms231810816.
Pełny tekst źródłaMagri, Chiara, Erika Vitali, Sara Cocco, et al. "Whole Blood Transcriptome Characterization of 3xTg-AD Mouse and Its Modulation by Transcranial Direct Current Stimulation (tDCS)." International Journal of Molecular Sciences 22, no. 14 (2021): 7629. http://dx.doi.org/10.3390/ijms22147629.
Pełny tekst źródłaYan, Xu-Dong, Xue-Song Qu, Jing Yin, et al. "Adiponectin Ameliorates Cognitive Behaviors and in vivo Synaptic Plasticity Impairments in 3xTg-AD Mice." Journal of Alzheimer's Disease 85, no. 1 (2022): 343–57. http://dx.doi.org/10.3233/jad-215063.
Pełny tekst źródłaRoda, Alejandro R., Laia Montoliu-Gaya, Gabriel Serra-Mir та Sandra Villegas. "Both Amyloid-β Peptide and Tau Protein Are Affected by an Anti-Amyloid-β Antibody Fragment in Elderly 3xTg-AD Mice". International Journal of Molecular Sciences 21, № 18 (2020): 6630. http://dx.doi.org/10.3390/ijms21186630.
Pełny tekst źródłaTan, Chenxi, Yang Liu, Huiyi Zhang, et al. "Neuroprotective Effects of Probiotic-Supplemented Diet on Cognitive Behavior of 3xTg-AD Mice." Journal of Healthcare Engineering 2022 (January 5, 2022): 1–10. http://dx.doi.org/10.1155/2022/4602428.
Pełny tekst źródłaNie, Lulin, Junxia Xia, Honglian Li, et al. "Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer’s Disease." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/6473506.
Pełny tekst źródłaKim, Juyong, Siyoung Lee, Jaekyoon Kim та ін. "Ca2+-permeable TRPV1 pain receptor knockout rescues memory deficits and reduces amyloid-β and tau in a mouse model of Alzheimer’s disease". Human Molecular Genetics 29, № 2 (2019): 228–37. http://dx.doi.org/10.1093/hmg/ddz276.
Pełny tekst źródłaOh, Kwang-Jin, Sylvia E. Perez, Sarita Lagalwar, Laurel Vana, Lester Binder, and Elliott J. Mufson. "Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis." International Journal of Alzheimer's Disease 2010 (2010): 1–24. http://dx.doi.org/10.4061/2010/780102.
Pełny tekst źródłaSu, Cen, Ping Niu, Yao-ming Xu, Ye Feng, and Hai-ping Xia. "Protective effect of Acorus tatarinowii extract against alzheimer in 3xTg-AD mice." Tropical Journal of Pharmaceutical Research 18, no. 9 (2021): 1903–7. http://dx.doi.org/10.4314/tjpr.v18i9.17.
Pełny tekst źródłaJullienne, Amandine, Ryan Quan, Jenny I. Szu, Michelle V. Trinh, Erik J. Behringer, and Andre Obenaus. "Progressive Vascular Abnormalities in the Aging 3xTg-AD Mouse Model of Alzheimer’s Disease." Biomedicines 10, no. 8 (2022): 1967. http://dx.doi.org/10.3390/biomedicines10081967.
Pełny tekst źródłaMa, Donglai, Wei Song, Minesh Kapadia, Margaret Fahnestock, and Boris Sakic. "Age-Dependent Synthesis of Diverse Autoantibodies in the 3xTg-AD Model of Alzheimer’s Disease." Journal of Immunology 204, no. 1_Supplement (2020): 64.5. http://dx.doi.org/10.4049/jimmunol.204.supp.64.5.
Pełny tekst źródłaBae, Hyunsu, Hyunjung Baek, Minsook Ye, et al. "Neuromodulatory activities of CD4+CD25+Foxp3+ regulatory T cells in 3xTg-AD Alzheimer’s disease model." Journal of Immunology 196, no. 1_Supplement (2016): 214.1. http://dx.doi.org/10.4049/jimmunol.196.supp.214.1.
Pełny tekst źródłaDennison, Jessica L., Natalie R. Ricciardi, Ines Lohse, Claude-Henry Volmar, and Claes Wahlestedt. "Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research." Journal of Alzheimer's Disease 80, no. 1 (2021): 41–52. http://dx.doi.org/10.3233/jad-201014.
Pełny tekst źródłaStojakovic, Andrea, Su-Youne Chang, Jarred Nesbitt, et al. "Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice." Journal of Alzheimer's Disease 79, no. 1 (2021): 335–53. http://dx.doi.org/10.3233/jad-201015.
Pełny tekst źródłaRuffinatti, F., L. Tapella, I. Gregnanin, et al. "Transcriptional Remodeling in Primary Hippocampal Astrocytes from an Alzheimer’s Disease Mouse Model." Current Alzheimer Research 15, no. 11 (2018): 986–1004. http://dx.doi.org/10.2174/1567205015666180613113924.
Pełny tekst źródłaCai, Ang, Liu Xiao, Yan-Ping Zhou, Zhi-Guo Zhang, and Quan-Wei Yang. "Effect of Evodia rutaecarpa (Juss) Benth extract on Alzheimer disease in mice." Tropical Journal of Pharmaceutical Research 19, no. 4 (2020): 823–28. http://dx.doi.org/10.4314/tjpr.v19i4.21.
Pełny tekst źródłaEscrig, Anna, Amalia Molinero, Brenda Méndez, et al. "IL-6 Trans-Signaling in the Brain Influences the Metabolic Phenotype of the 3xTg-AD Mouse Model of Alzheimer’s Disease." Cells 9, no. 7 (2020): 1605. http://dx.doi.org/10.3390/cells9071605.
Pełny tekst źródłaGiovinazzo, Daniel, Biljana Bursac, Juan I. Sbodio та ін. "Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation". Proceedings of the National Academy of Sciences 118, № 4 (2021): e2017225118. http://dx.doi.org/10.1073/pnas.2017225118.
Pełny tekst źródłaBae, Hyunsu, Minsook Ye, Chanju Lee, Hwan-Suck Chung, and Insop Shim. "Neuroprotective effects of bee venom phospholipase A2 mediated by the suppression of neuroinflammatory responses in the 3xTg AD mouse model of Alzheimer’s disease (THER2P.967)." Journal of Immunology 194, no. 1_Supplement (2015): 67.18. http://dx.doi.org/10.4049/jimmunol.194.supp.67.18.
Pełny tekst źródłaManna, Jayeeta, Gary L. Dunbar, and Panchanan Maiti. "Curcugreen Treatment Prevented Splenomegaly and Other Peripheral Organ Abnormalities in 3xTg and 5xFAD Mouse Models of Alzheimer’s Disease." Antioxidants 10, no. 6 (2021): 899. http://dx.doi.org/10.3390/antiox10060899.
Pełny tekst źródłaRoda, Alejandro R., Gisela Esquerda-Canals, Joaquim Martí-Clúa та Sandra Villegas. "Cognitive Impairment in the 3xTg-AD Mouse Model of Alzheimer’s Disease is Affected by Aβ-ImmunoTherapy and Cognitive Stimulation". Pharmaceutics 12, № 10 (2020): 944. http://dx.doi.org/10.3390/pharmaceutics12100944.
Pełny tekst źródłaMartínez-Iglesias, Olaia, Vinogran Naidoo, Iván Carrera, and Ramón Cacabelos. "Epigenetic Studies in the Male APP/BIN1/COPS5 Triple-Transgenic Mouse Model of Alzheimer’s Disease." International Journal of Molecular Sciences 23, no. 5 (2022): 2446. http://dx.doi.org/10.3390/ijms23052446.
Pełny tekst źródłaMuntsant, Aida, Francesc Jiménez-Altayó, Lidia Puertas-Umbert, Elena Jiménez-Xarrie, Elisabet Vila, and Lydia Giménez-Llort. "Sex-Dependent End-of-Life Mental and Vascular Scenarios for Compensatory Mechanisms in Mice with Normal and AD-Neurodegenerative Aging." Biomedicines 9, no. 2 (2021): 111. http://dx.doi.org/10.3390/biomedicines9020111.
Pełny tekst źródłaSzabó, Adrienn, Szidónia Farkas, Csilla Fazekas, et al. "Temporal Appearance of Enhanced Innate Anxiety in Alzheimer Model Mice." Biomedicines 11, no. 2 (2023): 262. http://dx.doi.org/10.3390/biomedicines11020262.
Pełny tekst źródłaDjordjevic, Jelena, Subir Roy Chowdhury, Wanda M. Snow, et al. "Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer’s Mice." Cells 9, no. 6 (2020): 1541. http://dx.doi.org/10.3390/cells9061541.
Pełny tekst źródłaSalobrar-García, Elena, Ana C. Rodrigues-Neves, Ana I. Ramírez, et al. "Microglial Activation in the Retina of a Triple-Transgenic Alzheimer’s Disease Mouse Model (3xTg-AD)." International Journal of Molecular Sciences 21, no. 3 (2020): 816. http://dx.doi.org/10.3390/ijms21030816.
Pełny tekst źródłaMarín-Pardo, Daniela, and Lydia Gimenez-Llort. "417 - Olfactory signatures in models of aging and Alzheimer’s disease and the effect of social isolation: A translational neuroscience approach in times of coronavirus pandemic (COVID-19)." International Psychogeriatrics 32, S1 (2020): 133. http://dx.doi.org/10.1017/s1041610220002707.
Pełny tekst źródłaCastillo-Mariqueo, Lidia, M. José Pérez-García, and Lydia Giménez-Llort. "Modeling Functional Limitations, Gait Impairments, and Muscle Pathology in Alzheimer’s Disease: Studies in the 3xTg-AD Mice." Biomedicines 9, no. 10 (2021): 1365. http://dx.doi.org/10.3390/biomedicines9101365.
Pełny tekst źródłaDelgado-Peraza, Francheska, Carlos J. Nogueras-Ortiz, Olga Volpert, et al. "Neuronal and Astrocytic Extracellular Vesicle Biomarkers in Blood Reflect Brain Pathology in Mouse Models of Alzheimer’s Disease." Cells 10, no. 5 (2021): 993. http://dx.doi.org/10.3390/cells10050993.
Pełny tekst źródłaGonzález de San Román, Estibaliz, Alberto Llorente-Ovejero, Jonatan Martínez-Gardeazabal, et al. "Modulation of Neurolipid Signaling and Specific Lipid Species in the Triple Transgenic Mouse Model of Alzheimer’s Disease." International Journal of Molecular Sciences 22, no. 22 (2021): 12256. http://dx.doi.org/10.3390/ijms222212256.
Pełny tekst źródłaEspino de la Fuente-Muñoz, César, Mónica Rosas-Lemus, Perla Moreno-Castilla, Federico Bermúdez-Rattoni, Salvador Uribe-Carvajal, and Clorinda Arias. "Age-Dependent Decline in Synaptic Mitochondrial Function Is Exacerbated in Vulnerable Brain Regions of Female 3xTg-AD Mice." International Journal of Molecular Sciences 21, no. 22 (2020): 8727. http://dx.doi.org/10.3390/ijms21228727.
Pełny tekst źródłaSnow, Wanda M., Chris Cadonic, Claudia Cortes-Perez, et al. "Sex-Specific Effects of Chronic Creatine Supplementation on Hippocampal-Mediated Spatial Cognition in the 3xTg Mouse Model of Alzheimer’s Disease." Nutrients 12, no. 11 (2020): 3589. http://dx.doi.org/10.3390/nu12113589.
Pełny tekst źródłaKim, Tae-Woon, Sang-Seo Park, Joon-Young Park, and Hye-Sang Park. "Infusion of Plasma from Exercised Mice Ameliorates Cognitive Dysfunction by Increasing Hippocampal Neuroplasticity and Mitochondrial Functions in 3xTg-AD Mice." International Journal of Molecular Sciences 21, no. 9 (2020): 3291. http://dx.doi.org/10.3390/ijms21093291.
Pełny tekst źródłaBae, Hyunsu, Hyunjung Baek, Minsook Ye та ін. "Aβ vaccination in conjunction with bee venom derived phospholipase A2 (bvPLA2) ameliorates Alzheimer’s disease pathology through the induction of Aβ-specific Treg population in 3xTg-AD mice". Journal of Immunology 196, № 1_Supplement (2016): 75.18. http://dx.doi.org/10.4049/jimmunol.196.supp.75.18.
Pełny tekst źródłaGuzzardi, Maria Angela, Federica La Rosa, Daniela Campani, et al. "Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model." Metabolites 12, no. 4 (2022): 278. http://dx.doi.org/10.3390/metabo12040278.
Pełny tekst źródłaWei, Wei, Yinghua Liu, Chun-Ling Dai, et al. "Neurotrophic Treatment Initiated During Early Postnatal Development Prevents the Alzheimer-Like Behavior and Synaptic Dysfunction." Journal of Alzheimer's Disease 82, no. 2 (2021): 631–46. http://dx.doi.org/10.3233/jad-201599.
Pełny tekst źródłaLi, Shuai, Xia Zhao, Philip Lazarovici та Wenhua Zheng. "Artemether Activation of AMPK/GSK3β(ser9)/Nrf2 Signaling Confers Neuroprotection towards β-Amyloid-Induced Neurotoxicity in 3xTg Alzheimer’s Mouse Model". Oxidative Medicine and Cellular Longevity 2019 (21 листопада 2019): 1–24. http://dx.doi.org/10.1155/2019/1862437.
Pełny tekst źródłaMartínez-Iglesias, Olaia, Iván Carrera, Juan Carlos Carril, Lucía Fernández-Novoa, Natalia Cacabelos, and Ramón Cacabelos. "DNA Methylation in Neurodegenerative and Cerebrovascular Disorders." International Journal of Molecular Sciences 21, no. 6 (2020): 2220. http://dx.doi.org/10.3390/ijms21062220.
Pełny tekst źródłaTorres-Lista, Virginia, and Lydia Giménez-Llort. "Impairment of nesting behaviour in 3xTg-AD mice." Behavioural Brain Research 247 (June 2013): 153–57. http://dx.doi.org/10.1016/j.bbr.2013.03.021.
Pełny tekst źródłaKokras, N., M. Dimitriadou, I. Sotiropoulos, A. L. Skaltsounis, A. Tsarbopoulos, and C. Dalla. "The therapeutic potential of natural compounds against Alzheimer's disease: A preclinical pharmacological study in both sexes." European Psychiatry 33, S1 (2016): S544. http://dx.doi.org/10.1016/j.eurpsy.2016.01.2010.
Pełny tekst źródłaGiménez-Llort, Lydia, Yoelvis García, Karla Buccieri, et al. "Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice." International Journal of Alzheimer's Disease 2010 (2010): 1–17. http://dx.doi.org/10.4061/2010/128354.
Pełny tekst źródłaChen, Chun, Eun Hee Ahn, Seong Su Kang, Xia Liu, Ashfaqul Alam та Keqiang Ye. "Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model". Science Advances 6, № 31 (2020): eaba0466. http://dx.doi.org/10.1126/sciadv.aba0466.
Pełny tekst źródłaMuñoz-Montero, Alicia, Ricardo de Pascual, Anabel Sáez-Mas, Inés Colmena, and Luis Gandía. "Alterations of the Sympathoadrenal Axis Related to the Development of Alzheimer’s Disease in the 3xTg Mouse Model." Biology 11, no. 4 (2022): 511. http://dx.doi.org/10.3390/biology11040511.
Pełny tekst źródłaOblak, Adrian L., Harriet M. Williams, David Baglietto-Vargas, et al. "P1-130: MODEL-AD: CHARACTERIZATION OF FAMILIAL AD MODELS (5XFAD, APP/PS1, HTAU, 3XTG-AD)." Alzheimer's & Dementia 14, no. 7S_Part_5 (2006): P321. http://dx.doi.org/10.1016/j.jalz.2018.06.133.
Pełny tekst źródłaChen, Yi-An, Cheng-Hsiu Lu, Chien-Chih Ke, et al. "Evaluation of Class IIa Histone Deacetylases Expression and In Vivo Epigenetic Imaging in a Transgenic Mouse Model of Alzheimer’s Disease." International Journal of Molecular Sciences 22, no. 16 (2021): 8633. http://dx.doi.org/10.3390/ijms22168633.
Pełny tekst źródłaPaula, Pérez-Corredor, Sabogal-Guáqueta Angelica Maria, Carrillo-Hormaza Luis, and Cardona-Gómez Gloria Patricia. "Preventive Effect of Quercetin in a Triple Transgenic Alzheimer’s Disease Mice Model." Molecules 24, no. 12 (2019): 2287. http://dx.doi.org/10.3390/molecules24122287.
Pełny tekst źródłaOchi, Shinichiro, Jun-ichi Iga, Yu Funahashi, et al. "Identifying Blood Transcriptome Biomarkers of Alzheimer’s Disease Using Transgenic Mice." Molecular Neurobiology 57, no. 12 (2020): 4941–51. http://dx.doi.org/10.1007/s12035-020-02058-2.
Pełny tekst źródłaBello-Medina, Paola C., Karina Corona-Cervantes, Norma Gabriela Zavala Torres та ін. "Chronic-Antibiotics Induced Gut Microbiota Dysbiosis Rescues Memory Impairment and Reduces β-Amyloid Aggregation in a Preclinical Alzheimer’s Disease Model". International Journal of Molecular Sciences 23, № 15 (2022): 8209. http://dx.doi.org/10.3390/ijms23158209.
Pełny tekst źródła