Gotowa bibliografia na temat „Absorption Ångstrom exponent”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Absorption Ångstrom exponent”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Absorption Ångstrom exponent"

1

Cheng, Yi, Junfang Mao, Zhe Bai, et al. "The Significant Contribution of Polycyclic Aromatic Nitrogen Heterocycles to Light Absorption in the Winter North China Plain." Sustainability 15, no. 11 (2023): 8568. http://dx.doi.org/10.3390/su15118568.

Pełny tekst źródła
Streszczenie:
By quantifying the absorption of black carbon (BC), brown carbon (BrC) and the lensing effect, we found that BrC dominates the total absorption at 450 nm, and the largest absorption contribution proportion of BrC could reach 78.3% during heavy pollution. The average absorption enhancement (Eabs) at 530 nm was only 1.38, indicating that BC is not coated well here. The average value of the absorption Ångstrom exponent (AAE) between 450 nm and 530 nm was 5.3, suggesting a high concentration of BrC in Wangdu. CHN+ was the greatest contributor to the light absorption of molecules detected in MSOC with a proportion of 12.2–22.4%, in which the polycyclic aromatic nitrogen heterocycles (PANHs) were the dominant compounds. The C6H5NO3 and its homologous series accounted for 3.0–11.3%, and the C15H9N and its homologous series, including one C16H11N and three C17H13N compounds, accounted for 5.1–12.3%. The absorption of these PANHs is comparable to that of nitro–aromatics, which should attract more attention to the impact of climate radiative forcing.
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Xiaolin, Mao Mao, Yan Yin, and Shihao Tang. "The absorption Ångstrom exponent of black carbon with brown coatings: effects of aerosol microphysics and parameterization." Atmospheric Chemistry and Physics 20, no. 16 (2020): 9701–11. http://dx.doi.org/10.5194/acp-20-9701-2020.

Pełny tekst źródła
Streszczenie:
Abstract. The aerosol absorption Ångstrom exponent (AAE) is a crucial optical parameter for apportionment and characterization. Due to considerable inconsistences associated with observations, numerical research is a powerful means to give a better understanding of the AAE of aged black carbon (BC) aerosols. Numerical studies of the AAE of polydisperse BC aggregates with brown coatings using the exact multiple-sphere T-matrix method (MSTM) are performed. The objective of the study is to thoroughly assess the AAE of coated BC influenced by their observation-based detailed microphysics and then provide a new AAE parameterization for application. At odds with our expectations, more large-sized BC particles coated by thin brown carbon can have an AAE smaller than 1.0, indicating that BC aerosols internally mixing with brown carbon can even show lower AAE than pure BC particles. The AAE of BC with brown coatings is highly sensitive to the absorbing volume fraction of the coating, coated volume fraction of BC, shell ∕ core ratio, and particle size distribution with a wide variation, whereas the impacts of BC geometry and BC position within the coating are negligible. The AAE of BC with brown coatings can be larger than 3.0 if there are plenty of small-sized coated BC particles, heavy coating, or a large amount of brown carbon. However, the AAE of BC with non-absorbing coating appears to be weakly sensitive to particle microphysics with values around 1.0 (i.e., 0.7–1.4), suggesting the substantial role of the absorbing volume fraction of the coating in AAE determination. With more realistic BC geometries, our study also indicates that the occurrence of brown carbon may not be confidently determined unless AAE > 1.4. The currently popular core–shell Mie model reasonably approximates the AAE of fully coated BC by brown carbon, whereas it underestimates the AAE of partially coated or externally attached BC and underestimates more for a lower coated volume fraction of BC. In addition, we present a parameterization of the AAE of coated BC with a size distribution on the basis of numerical results, which can act as a guide for the AAE response to the absorbing volume fraction of the coating, coated volume fraction of BC, and shell ∕ core ratio. The proposed parameterization of coated BC AAE generates a decent prediction for moderate BC microphysics, whereas caution should be taken in applying it for extreme cases, such as externally attached coated BC morphology. Our findings could improve the understanding and application of the AAE of BC with brown coatings.
Style APA, Harvard, Vancouver, ISO itp.
3

Lack, D. A., R. Bahreni, J. M. Langridge, J. B. Gilman, and A. M. Middlebrook. "Brown carbon absorption linked to organic mass tracers in biomass burning particles." Atmospheric Chemistry and Physics Discussions 12, no. 11 (2012): 29129–46. http://dx.doi.org/10.5194/acpd-12-29129-2012.

Pełny tekst źródła
Streszczenie:
Abstract. Traditional gas and particle phase chemical markers used to identify the presence of biomass burning (BB) emissions were measured for a large forest fire near Boulder, Colorado. Correlation of the mass spectroscopic marker of levoglucosan (m/z 60) with measured particle light absorption properties found no link at 532 nm, and a strong correlation at 404 nm. Non-black carbon (BC) absorption at 404 nm was well correlated to the ratio of the mass fractions of particulate organic matter (POM) that were m/z 60 (f60) to m/z 44 (f44). The f60 to f44 ratio did not fully explain the variability in non-BC absorption, due to contributions of brown carbon (BrC) absorption and absorption due to internal mixing of POM with BC. The absorption Ångstrom exponent (å) showed a good correlation to f60/f44; however the best correlation resulted from the mass absorption efficiency (MAE) of BrC at 404 nm (MAEPOM-404 nm) and f60/f44. This result indicates that the absorption of POM at low visible and UV wavelengths is primarily driven by emissions of levoglucosan (and related compounds), although they do not contribute to 532 nm absorption in this fire. The linear relationship between MAEPOM-404 nm and f60/f44 suggests that the impact of BrC can be predicted by emissions of f60-related organic matter.
Style APA, Harvard, Vancouver, ISO itp.
4

Doherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt. "Light-absorbing impurities in Arctic snow." Atmospheric Chemistry and Physics 10, no. 23 (2010): 11647–80. http://dx.doi.org/10.5194/acp-10-11647-2010.

Pełny tekst źródła
Streszczenie:
Abstract. Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 1998 and 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland Ice Sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. This is done using BC calibration standards having a mass absorption efficiency of 6.0 m2 g−1 at 550 nm and by making an assumption that the absorption Angstrom exponent for BC is 1.0 and for non-BC light-absorbing aerosol is 5.0. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, subarctic Canada 14, Svalbard 13, Northern Norway 21, western Arctic Russia 27, northeastern Siberia 34. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual samples of falling snow were collected on Svalbard, documenting the springtime decline of BC from March through May. Absorption Ångstrom exponents are 1.5–1.7 in Norway, Svalbard, and western Russia, 2.1–2.3 elsewhere in the Arctic, and 2.5 in Greenland. Correspondingly, the estimated contribution to absorption by non-BC constituents in these regions is ~25%, 40%, and 50% respectively. It has been hypothesized that when the snow surface layer melts some of the BC is left at the top of the snowpack rather than being carried away in meltwater. This process was observed in a few locations and would cause a positive feedback on snowmelt. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air at Alert (Canada), Barrow (Alaska), and Ny-Ålesund (Svalbard). Correspondingly, the new BC concentrations for Arctic snow are somewhat lower than those reported by Clarke and Noone for 1983–1984, but because of methodological differences it is not clear that the differences are significant. Nevertheless, the BC content of Arctic snow appears to be no higher now than in 1984, so it is doubtful that BC in Arctic snow has contributed to the rapid decline of Arctic sea ice in recent years.
Style APA, Harvard, Vancouver, ISO itp.
5

Lack, D. A., R. Bahreini, J. M. Langridge, J. B. Gilman, and A. M. Middlebrook. "Brown carbon absorption linked to organic mass tracers in biomass burning particles." Atmospheric Chemistry and Physics 13, no. 5 (2013): 2415–22. http://dx.doi.org/10.5194/acp-13-2415-2013.

Pełny tekst źródła
Streszczenie:
Abstract. Traditional gas and particle phase chemical markers used to identify the presence of biomass burning (BB) emissions were measured for a large forest fire near Boulder, Colorado. Correlation of the organic matter mass spectroscopic m/z 60 with measured particle light absorption properties found no link at 532 nm, and a strong correlation at 404 nm. Non-black carbon absorption at 404 nm was well correlated to the ratio of the mass fractions of particulate organic matter (POM) that was m/z 60 (f60) to m/z 44 (f44). The f60 to f44 ratio did not fully explain the variability in non-BC absorption, due to contributions of brown carbon (BrC) absorption and absorption due to internal mixing of POM with black carbon (BC). The absorption Ångstrom exponent (ÅAbs) showed a good correlation to f60/f44; however the best correlation resulted from the mass absorption efficiency (MAE) of BrC at 404 nm (MAEPOM-404 nm) and f60/f44. This result indicates that the absorption of POM at low visible and UV wavelengths is linked to emissions of organic matter that contribute to the m/z 60 mass fragment, although they do not contribute to 532 nm absorption. m/z 60 is often attributed to levoglucosan and related compounds. The linear relationship between MAEPOM-404 nm and f60/f44 suggests that the strength of BrC absorption for this fire can be predicted by emissions of f60-related organic matter.
Style APA, Harvard, Vancouver, ISO itp.
6

Doherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt. "Light-absorbing impurities in Arctic snow." Atmospheric Chemistry and Physics Discussions 10, no. 8 (2010): 18807–78. http://dx.doi.org/10.5194/acpd-10-18807-2010.

Pełny tekst źródła
Streszczenie:
Abstract. Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual samples of falling snow were collected on Svalbard, documenting the springtime decline of BC from March through May. Absorption Ångstrom exponents are 1.5–1.7 in Norway, Svalbard, and Western Russia, 2.1–2.3 elsewhere in the Arctic, and 2.5 in Greenland. Correspondingly, the estimated contribution to absorption by non-BC constituents in these regions is ~25%, 40%, and 50%, respectively. It has been hypothesized that when the snow surface layer melts some of the BC is left at the top of the snowpack rather than being carried away in meltwater. This process was observed in a few locations and would cause a positive feedback on snowmelt. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air at Alert (Canada), Barrow (Alaska), and Ny-Ålesund (Svalbard). Correspondingly, the new BC concentrations for Arctic snow are somewhat lower than those reported by Clarke and Noone for 1983–1984, but because of methodological differences it is not clear that the differences are significant.
Style APA, Harvard, Vancouver, ISO itp.
7

Lara, Pamela, Rosa M. Fitzgerald, Nakul N. Karle, et al. "Winter and Wildfire Season Optical Characterization of Black and Brown Carbon in the El Paso-Ciudad Juárez Airshed." Atmosphere 13, no. 8 (2022): 1201. http://dx.doi.org/10.3390/atmos13081201.

Pełny tekst źródła
Streszczenie:
Black (EBC) and Brown (BrC) Carbon are ubiquitous constituents of atmospheric particulate matter that affect people’s health, disrupt ecosystems, and modulate local and global climate. Tracking the local deposition and sources of these aerosol particles is essential to better understanding their multidimensional environmental impact. The main goal of the current study is to measure the absorption coefficient (Babs) of particles within the Planetary Boundary Layer (PBL) of the El Paso (US)–Ciudad Juárez (Mexico) airshed and assess the contribution of black and brown carbon particles to the optical absorption. Measurements were taken during a summer, wildfire, and winter season to evaluate the optical properties of BC and non-volatile BrC. The winter season presented a variation from the background Babs in the late evening hours (3:00 PM to midnight) due to an increase in biomass burning driven by lower temperatures. The wildfire season presents the greatest variation in the Babs from the background absorption due to EBC- and BrC-rich smoke plumes arriving at this region from the US West seasonal wildfires. It was found that the international bridges’ vehicular traffic, waiting time to cross back and forth between both cities, added to other local anthropogenic activities, such as brick kiln emissions in Ciudad Juarez, have created a background of air pollution in this region. These pollutants include carbon monoxide, sulfur dioxide, nitrogen and nitric oxides, coarse and fine particulate matter dominated by BC and BrC. The absorption coefficients due to EBC and BrC of this background constitute what we have called a baseline EBC and BrC. Aided by two photoacoustic Extinctiometers (PAX), operating at 405 nm and 870 nm wavelengths, connected to a 340 °C thermal denuder to remove volatile organics, the optical properties were documented and evaluated to identify the impact of long-range transported emissions from western wildfires. The Single Scattering Albedo and the Absorption Ångstrom exponent were calculated for the winter and summer season. The Angstrom exponent showed a decrease during the wildfire events due to the aging process. The High-Resolution Rapid Refresh Smoke model, HRRR, and the Hybrid Single-Particle Lagrangian Integrated Trajectory model, HYSPLIT, were used to estimate the sources of the particles. In addition, a Vaisala Ceilometer was employed to study the vertical profile of particulate matter within the planetary boundary layer.
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, J., M. Bergin, H. Guo, et al. "Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts." Atmospheric Chemistry and Physics Discussions 13, no. 7 (2013): 18233–76. http://dx.doi.org/10.5194/acpd-13-18233-2013.

Pełny tekst źródła
Streszczenie:
Abstract. Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied to solution measurements, at all sites, Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with highest contributions at the rural site where organic to elemental carbon ratios were highest. Brown carbon absorption, however, was highest by the roadside site due to vehicle emissions. The multi-wavelength aethalometer did not detect brown carbon, having an absorption Ångstrom exponent near one. Although the results are within the estimated Aethalometer uncertainties, the direct measurement of brown carbon in solution definitively shows that it is present and this Mie analysis suggests it is optically important in the near UV range in both a rural and urban environment during summer when biomass burning emissions are low.
Style APA, Harvard, Vancouver, ISO itp.
9

Markowicz, Krzysztof M., Iwona S. Stachlewska, Olga Zawadzka-Manko, et al. "A Decade of Poland-AOD Aerosol Research Network Observations." Atmosphere 12, no. 12 (2021): 1583. http://dx.doi.org/10.3390/atmos12121583.

Pełny tekst źródła
Streszczenie:
The Poland-AOD aerosol research network was established in 2011 to improve aerosol–climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), Ångstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and at mospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m2/10 yr and 0.68 W/m2/10 yr, respectively, at TOA and at Earth’s surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.
Style APA, Harvard, Vancouver, ISO itp.
10

Rizzo, L. V., A. L. Correia, P. Artaxo, A. S. Procópio, and M. O. Andreae. "Spectral dependence of aerosol light absorption over the Amazon Basin." Atmospheric Chemistry and Physics 11, no. 17 (2011): 8899–912. http://dx.doi.org/10.5194/acp-11-8899-2011.

Pełny tekst źródła
Streszczenie:
Abstract. In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral range of 450–880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Absorption Ångstrom exponent"

1

Hu, Jason. "Seasonality and sources of light-absorbing aerosols at Summit, Greenland." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53838.

Pełny tekst źródła
Streszczenie:
The Greenland ice sheet (GIS) is a key component of the warming Arctic climate, having the potential to dramatically influence sea level through melting. Light-absorbing aerosols are thought to be significant contributors to warming in the Arctic, because of their effect on the radiation balance through both aerosol absorption in the atmosphere as well as absorption in surface snow after particulate deposition. At this time it is not possible to estimate the impact of aerosol absorption on the radiation balance over Greenland due to the lack of in-situ measurements. Here, we present time series and estimates of key aerosol optical properties in order to better understand the seasonality and sources of aerosols over central Greenland, and compare their values with other Arctic sites. In-situ measurements made at Summit, Greenland from May 8, 2011 to December 31, 2014 include aerosol light absorption coefficient (σap) and light scattering coefficient (σsp); calculated parameters include absorption Ångström exponent (AAE), and single scattering albedo (ωo). The light absorption and scattering coefficients were found to be low in the winter and highest in the spring and summer. Spring-summer means of σap and σsp were 0.15 ± 0.15 Mm-1 and 2.35 ± 2.80 Mm-1, respectively. Mean AAE was 0.97 ± 0.29 in the spring and summer, indicating that black carbon (BC), and not dust and/or organic brown carbon (BrC), is the main aerosol light absorber. Mean ωo was 0.93 ± 0.03, which is similar to values measured at Barrow, Alaska, USA (0.94 ± 0.05) and Ny-Ålesund, Svalbard, Norway (0.95 ± 0.06). Summit exhibits ωo as low as Barrow and Ny-Ålesund although it is an isolated high-altitude site indicating the importance of aerosol light absorption over the most remote Arctic locations.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Absorption Ångstrom exponent"

1

Chance, Kelly, and Randall V. Martin. Atmospheric Scattering. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199662104.003.0007.

Pełny tekst źródła
Streszczenie:
This chapter describes elastic scattering events, where the wavelength of the scattered light is unchanged from that of the incident light and conservative scattering, scattering without absorption, sometimes closely approximated in clouds. The scattering regime, scattering versus wavelengths and scatterer size are introduced. Polarization in scattering is described by the Stokes vector and the polarization ellipse. Molecular (Rayleigh) scattering is presented and its atmospherically-important inelastic component, Raman scattering (the Ring effect) quantified. Mie scattering for spherical particles is described as is the commonly-used Henyey-Greenstein Mie phase function approximation. Non-spherical scatterers are introduced. The Ångstrom exponent and the expansion of phase functions in Legendre polynomials are described.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii