Artykuły w czasopismach na temat „Absorption Ångstrom exponent”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Absorption Ångstrom exponent”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cheng, Yi, Junfang Mao, Zhe Bai, et al. "The Significant Contribution of Polycyclic Aromatic Nitrogen Heterocycles to Light Absorption in the Winter North China Plain." Sustainability 15, no. 11 (2023): 8568. http://dx.doi.org/10.3390/su15118568.
Pełny tekst źródłaZhang, Xiaolin, Mao Mao, Yan Yin, and Shihao Tang. "The absorption Ångstrom exponent of black carbon with brown coatings: effects of aerosol microphysics and parameterization." Atmospheric Chemistry and Physics 20, no. 16 (2020): 9701–11. http://dx.doi.org/10.5194/acp-20-9701-2020.
Pełny tekst źródłaLack, D. A., R. Bahreni, J. M. Langridge, J. B. Gilman, and A. M. Middlebrook. "Brown carbon absorption linked to organic mass tracers in biomass burning particles." Atmospheric Chemistry and Physics Discussions 12, no. 11 (2012): 29129–46. http://dx.doi.org/10.5194/acpd-12-29129-2012.
Pełny tekst źródłaDoherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt. "Light-absorbing impurities in Arctic snow." Atmospheric Chemistry and Physics 10, no. 23 (2010): 11647–80. http://dx.doi.org/10.5194/acp-10-11647-2010.
Pełny tekst źródłaLack, D. A., R. Bahreini, J. M. Langridge, J. B. Gilman, and A. M. Middlebrook. "Brown carbon absorption linked to organic mass tracers in biomass burning particles." Atmospheric Chemistry and Physics 13, no. 5 (2013): 2415–22. http://dx.doi.org/10.5194/acp-13-2415-2013.
Pełny tekst źródłaDoherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt. "Light-absorbing impurities in Arctic snow." Atmospheric Chemistry and Physics Discussions 10, no. 8 (2010): 18807–78. http://dx.doi.org/10.5194/acpd-10-18807-2010.
Pełny tekst źródłaLara, Pamela, Rosa M. Fitzgerald, Nakul N. Karle, et al. "Winter and Wildfire Season Optical Characterization of Black and Brown Carbon in the El Paso-Ciudad Juárez Airshed." Atmosphere 13, no. 8 (2022): 1201. http://dx.doi.org/10.3390/atmos13081201.
Pełny tekst źródłaLiu, J., M. Bergin, H. Guo, et al. "Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts." Atmospheric Chemistry and Physics Discussions 13, no. 7 (2013): 18233–76. http://dx.doi.org/10.5194/acpd-13-18233-2013.
Pełny tekst źródłaMarkowicz, Krzysztof M., Iwona S. Stachlewska, Olga Zawadzka-Manko, et al. "A Decade of Poland-AOD Aerosol Research Network Observations." Atmosphere 12, no. 12 (2021): 1583. http://dx.doi.org/10.3390/atmos12121583.
Pełny tekst źródłaRizzo, L. V., A. L. Correia, P. Artaxo, A. S. Procópio, and M. O. Andreae. "Spectral dependence of aerosol light absorption over the Amazon Basin." Atmospheric Chemistry and Physics 11, no. 17 (2011): 8899–912. http://dx.doi.org/10.5194/acp-11-8899-2011.
Pełny tekst źródłaSingh, Sujeeta, Marc N. Fiddler, and Solomon Bililign. "Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry." Atmospheric Chemistry and Physics 16, no. 21 (2016): 13491–507. http://dx.doi.org/10.5194/acp-16-13491-2016.
Pełny tekst źródłaRizzo, L. V., A. L. Correia, P. Artaxo, A. S. Procópio, and M. O. Andreae. "Spectral dependence of aerosol light absorption over the Amazon Basin." Atmospheric Chemistry and Physics Discussions 11, no. 4 (2011): 11547–77. http://dx.doi.org/10.5194/acpd-11-11547-2011.
Pełny tekst źródłaPandolfi, M., M. Cusack, A. Alastuey, and X. Querol. "Variability of aerosol optical properties in the Western Mediterranean Basin." Atmospheric Chemistry and Physics Discussions 11, no. 5 (2011): 14091–125. http://dx.doi.org/10.5194/acpd-11-14091-2011.
Pełny tekst źródłaSchnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. "Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion." Atmospheric Chemistry and Physics Discussions 6, no. 2 (2006): 1841–66. http://dx.doi.org/10.5194/acpd-6-1841-2006.
Pełny tekst źródłaSchnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. "Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion." Atmospheric Chemistry and Physics 6, no. 10 (2006): 2981–90. http://dx.doi.org/10.5194/acp-6-2981-2006.
Pełny tekst źródłaPandolfi, M., M. Cusack, A. Alastuey, and X. Querol. "Variability of aerosol optical properties in the Western Mediterranean Basin." Atmospheric Chemistry and Physics 11, no. 15 (2011): 8189–203. http://dx.doi.org/10.5194/acp-11-8189-2011.
Pełny tekst źródłaLiu, Chao, Chul Eddy Chung, Yan Yin, and Martin Schnaiter. "The absorption Ångström exponent of black carbon: from numerical aspects." Atmospheric Chemistry and Physics 18, no. 9 (2018): 6259–73. http://dx.doi.org/10.5194/acp-18-6259-2018.
Pełny tekst źródłaSaleh, R., C. J. Hennigan, G. R. McMeeking, et al. "Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions." Atmospheric Chemistry and Physics Discussions 13, no. 5 (2013): 11509–36. http://dx.doi.org/10.5194/acpd-13-11509-2013.
Pełny tekst źródłaSchuster, G. L., O. Dubovik, A. Arola, T. F. Eck, and B. N. Holben. "Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent." Atmospheric Chemistry and Physics 16, no. 3 (2016): 1587–602. http://dx.doi.org/10.5194/acp-16-1587-2016.
Pełny tekst źródłaLack, D. A., and J. M. Langridge. "On the attribution of black and brown carbon light absorption using the Ångström exponent." Atmospheric Chemistry and Physics 13, no. 20 (2013): 10535–43. http://dx.doi.org/10.5194/acp-13-10535-2013.
Pełny tekst źródłaLack, D. A., and J. M. Langridge. "On the attribution of black and brown carbon light absorption using the Ångström exponent." Atmospheric Chemistry and Physics Discussions 13, no. 6 (2013): 15493–515. http://dx.doi.org/10.5194/acpd-13-15493-2013.
Pełny tekst źródłaCheng, Yuan, Zheng Kong, Jiheng Yu, and Liang Mei. "Measurements of the single-wavelength aerosol Ångström exponent based on differential absorption." Optics & Laser Technology 184 (June 2025): 112437. https://doi.org/10.1016/j.optlastec.2025.112437.
Pełny tekst źródłaZhao, Dapeng, Yan Yin, Chao Liu, Chunsong Lu, and Xiaofeng Xu. "Can the Aerosol Absorption Ångström Exponent Represent Aerosol Color in the Atmosphere: A Numerical Study." Atmosphere 11, no. 2 (2020): 187. http://dx.doi.org/10.3390/atmos11020187.
Pełny tekst źródłaAndrews, E., P. J. Sheridan, and J. A. Ogren. "Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma." Atmospheric Chemistry and Physics 11, no. 20 (2011): 10661–76. http://dx.doi.org/10.5194/acp-11-10661-2011.
Pełny tekst źródłaRennie, Megan, Vera Samburova, Deep Sengupta, et al. "Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum)." Atmosphere 11, no. 4 (2020): 406. http://dx.doi.org/10.3390/atmos11040406.
Pełny tekst źródłaLinke, Claudia, Inas Ibrahim, Nina Schleicher, et al. "A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research." Atmospheric Measurement Techniques 9, no. 11 (2016): 5331–46. http://dx.doi.org/10.5194/amt-9-5331-2016.
Pełny tekst źródłaVijay, Saloni, Lars Schöbitz, Hope Kelvin Chilunga, and Elizabeth Tilley. "Absorption Ångström Exponent Values to Identify Light-absorbing Carbonaceous Aerosol Sources in Blantyre, Malawi." Aerosol and Air Quality Research 24 (2024): 240095. http://dx.doi.org/10.4209/aaqr.240095.
Pełny tekst źródłaDrinovec, Luka, Uroš Jagodič, Luka Pirker, et al. "A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance." Atmospheric Measurement Techniques 15, no. 12 (2022): 3805–25. http://dx.doi.org/10.5194/amt-15-3805-2022.
Pełny tekst źródłaGyawali, M., W. P. Arnott, R. A. Zaveri, et al. "Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols." Atmospheric Chemistry and Physics 12, no. 5 (2012): 2587–601. http://dx.doi.org/10.5194/acp-12-2587-2012.
Pełny tekst źródłaVirkkula, Aki. "Modeled source apportionment of black carbon particles coated with a light-scattering shell." Atmospheric Measurement Techniques 14, no. 5 (2021): 3707–19. http://dx.doi.org/10.5194/amt-14-3707-2021.
Pełny tekst źródłaMontilla, E., S. Mogo, V. Cachorro, J. Lopez, and A. de Frutos. "Absorption, scattering and single scattering albedo of aerosols obtained from in situ measurements in the subarctic coastal region of Norway." Atmospheric Chemistry and Physics Discussions 11, no. 1 (2011): 2161–82. http://dx.doi.org/10.5194/acpd-11-2161-2011.
Pełny tekst źródłaTian, Ping, Dantong Liu, Delong Zhao, et al. "In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing." Atmospheric Chemistry and Physics 20, no. 4 (2020): 2603–22. http://dx.doi.org/10.5194/acp-20-2603-2020.
Pełny tekst źródłaChen, Cheng, Oleg Dubovik, Daven K. Henze, et al. "Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations." Atmospheric Chemistry and Physics 19, no. 23 (2019): 14585–606. http://dx.doi.org/10.5194/acp-19-14585-2019.
Pełny tekst źródłaCazorla, A., R. Bahadur, K. J. Suski, et al. "Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements." Atmospheric Chemistry and Physics Discussions 13, no. 2 (2013): 3451–83. http://dx.doi.org/10.5194/acpd-13-3451-2013.
Pełny tekst źródłaCazorla, A., R. Bahadur, K. J. Suski, et al. "Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements." Atmospheric Chemistry and Physics 13, no. 18 (2013): 9337–50. http://dx.doi.org/10.5194/acp-13-9337-2013.
Pełny tekst źródłaDoherty, Sarah J., Pablo E. Saide, Paquita Zuidema, et al. "Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic." Atmospheric Chemistry and Physics 22, no. 1 (2022): 1–46. http://dx.doi.org/10.5194/acp-22-1-2022.
Pełny tekst źródłaGyawali, M., W. P. Arnott, R. A. Zaveri, et al. "Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols." Atmospheric Chemistry and Physics Discussions 11, no. 9 (2011): 25063–98. http://dx.doi.org/10.5194/acpd-11-25063-2011.
Pełny tekst źródłaSinyuk, Alexander, Brent N. Holben, Thomas F. Eck, et al. "Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm." Atmospheric Measurement Techniques 15, no. 14 (2022): 4135–51. http://dx.doi.org/10.5194/amt-15-4135-2022.
Pełny tekst źródłaGiannakaki, E., D. S. Balis, V. Amiridis, and C. Zerefos. "Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece." Atmospheric Measurement Techniques 3, no. 3 (2010): 569–78. http://dx.doi.org/10.5194/amt-3-569-2010.
Pełny tekst źródłaGarland, R. M., H. Yang, O. Schmid, et al. "Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution and radiative forcing." Atmospheric Chemistry and Physics Discussions 8, no. 2 (2008): 6845–901. http://dx.doi.org/10.5194/acpd-8-6845-2008.
Pełny tekst źródłaLi, J., B. E. Carlson, O. Dubovik, and A. A. Lacis. "Recent trends in aerosol optical properties derived from AERONET measurements." Atmospheric Chemistry and Physics Discussions 14, no. 10 (2014): 14351–97. http://dx.doi.org/10.5194/acpd-14-14351-2014.
Pełny tekst źródłaIsolabella, Tommaso, Vera Bernardoni, Alessandro Bigi, et al. "A new software toolkit for optical apportionment of carbonaceous aerosol." Atmospheric Measurement Techniques 17, no. 4 (2024): 1363–73. http://dx.doi.org/10.5194/amt-17-1363-2024.
Pełny tekst źródłaEalo, Marina, Andrés Alastuey, Anna Ripoll, et al. "Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean." Atmospheric Chemistry and Physics 16, no. 19 (2016): 12567–86. http://dx.doi.org/10.5194/acp-16-12567-2016.
Pełny tekst źródłaGiannakaki, E., D. S. Balis, V. Amiridis, and C. Zerefos. "Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece." Atmospheric Measurement Techniques Discussions 2, no. 6 (2009): 3027–54. http://dx.doi.org/10.5194/amtd-2-3027-2009.
Pełny tekst źródłaTörök, Sandra, Vilhelm B. Malmborg, Johan Simonsson, et al. "Investigation of the absorption Ångström exponent and its relation to physicochemical properties for mini-CAST soot." Aerosol Science and Technology 52, no. 7 (2018): 757–67. http://dx.doi.org/10.1080/02786826.2018.1457767.
Pełny tekst źródłaBackman, J., A. Virkkula, V. Vakkari, et al. "Differences in aerosol absorption Ångström exponents between correction algorithms for particle soot absorption photometer measured on South African Highveld." Atmospheric Measurement Techniques Discussions 7, no. 9 (2014): 9733–69. http://dx.doi.org/10.5194/amtd-7-9733-2014.
Pełny tekst źródłaLuoma, Krista, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala. "Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site." Atmospheric Measurement Techniques 14, no. 10 (2021): 6419–41. http://dx.doi.org/10.5194/amt-14-6419-2021.
Pełny tekst źródłaPandolfi, M., A. Ripoll, X. Querol, and A. Alastuey. "Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high altitude site in the Western Mediterranean Basin." Atmospheric Chemistry and Physics Discussions 14, no. 3 (2014): 3777–814. http://dx.doi.org/10.5194/acpd-14-3777-2014.
Pełny tekst źródłaDrinovec, Luka, Asta Gregorič, Peter Zotter, et al. "The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles." Atmospheric Measurement Techniques 10, no. 3 (2017): 1043–59. http://dx.doi.org/10.5194/amt-10-1043-2017.
Pełny tekst źródłaLi, Zhujie, Haobo Tan, Jun Zheng, et al. "Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China." Atmospheric Chemistry and Physics 19, no. 18 (2019): 11669–85. http://dx.doi.org/10.5194/acp-19-11669-2019.
Pełny tekst źródła