Gotowa bibliografia na temat „Activin signaling pathway”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Activin signaling pathway”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Activin signaling pathway"
Olsen, Oddrun Elise, Hanne Hella, Samah Elsaadi, Carsten Jacobi, Erik Martinez-Hackert i Toril Holien. "Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors". Biomolecules 10, nr 4 (29.03.2020): 519. http://dx.doi.org/10.3390/biom10040519.
Pełny tekst źródłaXie, Chen, Wenjuan Jiang, Jerome J. Lacroix, Yun Luo i Jijun Hao. "Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling". International Journal of Molecular Sciences 21, nr 18 (5.09.2020): 6498. http://dx.doi.org/10.3390/ijms21186498.
Pełny tekst źródłaLebrun, Jean-Jacques, Kazuaki Takabe, Yan Chen i Wylie Vale. "Roles of Pathway-Specific and Inhibitory Smads in Activin Receptor Signaling". Molecular Endocrinology 13, nr 1 (1.01.1999): 15–23. http://dx.doi.org/10.1210/mend.13.1.0218.
Pełny tekst źródłaJung, Jae Woo, Chihoon Ahn, Sun Young Shim, Peter C. Gray, Witek Kwiatkowski i Senyon Choe. "Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215". Journal of Endocrinology 223, nr 1 (6.08.2014): 35–45. http://dx.doi.org/10.1530/joe-14-0317.
Pełny tekst źródłaTang, Pei, Xueer Wang, Min Zhang, Simin Huang, Chuxi Lin, Fang Yan, Ying Deng, Lu Zhang i Lin Zhang. "Activin B Stimulates Mouse Vibrissae Growth and Regulates Cell Proliferation and Cell Cycle Progression of Hair Matrix Cells through ERK Signaling". International Journal of Molecular Sciences 20, nr 4 (15.02.2019): 853. http://dx.doi.org/10.3390/ijms20040853.
Pełny tekst źródłaRoh, Jason D., Ryan Hobson, Vinita Chaudhari, Pablo Quintero, Ashish Yeri, Mark Benson, Chunyang Xiao i in. "Activin type II receptor signaling in cardiac aging and heart failure". Science Translational Medicine 11, nr 482 (6.03.2019): eaau8680. http://dx.doi.org/10.1126/scitranslmed.aau8680.
Pełny tekst źródłaQiu, Wanglong, Chia-Yu Kuo, Yu Tian i Gloria H. Su. "Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer". Biomedicines 9, nr 7 (14.07.2021): 821. http://dx.doi.org/10.3390/biomedicines9070821.
Pełny tekst źródłaMallick, Sreeradha, Eric Kenney i Ioannis Eleftherianos. "The Activin Branch Ligand Daw Regulates the Drosophila melanogaster Immune Response and Lipid Metabolism against the Heterorhabditis bacteriophora Serine Carboxypeptidase". International Journal of Molecular Sciences 25, nr 14 (21.07.2024): 7970. http://dx.doi.org/10.3390/ijms25147970.
Pełny tekst źródłaLaBonne, C., i M. Whitman. "Mesoderm induction by activin requires FGF-mediated intracellular signals". Development 120, nr 2 (1.02.1994): 463–72. http://dx.doi.org/10.1242/dev.120.2.463.
Pełny tekst źródłaLamba, Pankaj, Michelle M. Santos, Daniel P. Philips i Daniel J. Bernard. "Acute regulation of murine follicle-stimulating hormone β subunit transcription by activin A". Journal of Molecular Endocrinology 36, nr 1 (luty 2006): 201–20. http://dx.doi.org/10.1677/jme.1.01961.
Pełny tekst źródłaRozprawy doktorskie na temat "Activin signaling pathway"
Shi, Dan. "Computational analysis of transcriptional responses to the Activin signal". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21891.
Pełny tekst źródłaTransforming growth factor-β (TGF-β) signaling pathways play a crucial role in cell proliferation, migration, and apoptosis through the activation of Smad proteins. Research has shown that the biological effects of TGF-β signaling pathway are highly cellular-context-dependent. In this thesis work, I aimed at understanding how TGF-β signaling can regulate target genes differently, how different dynamics of gene expressions are induced by TGF-β signal, and what is the role of Smad proteins in differing the profiles of target gene expression. In this study, I focused on the transcriptional responses to the Nodal/Activin ligand, which is a member of the TGF-β superfamily and a key regulator of early embryonic development. Kinetic models were developed and calibrated with the time course data of RNA polymerase II (Pol II) and Smad2 chromatin binding profiles for the target genes. Using the Akaike information criterion (AIC) to evaluate different kinetic models, we discovered that Nodal/Activin signaling regulates target genes via different mechanisms. In the Nodal/Activin-Smad2 signaling pathway, Smad2 plays different regulatory roles on different target genes. We show how Smad2 participates in regulating the transcription or degradation rate of each target gene separately. Moreover, a series of features that can predict the transcription dynamics of target genes are selected by logistic regression. The approach we present here provides quantitative relationships between transcription factor dynamics and transcriptional responses. This work also provides a general computational framework for studying the transcription regulations of other signaling pathways.
Ibrahim, Christine. "Exploring the role of the activin A-ActRIIB pathway in sickle cell disease-associated nephropathy and sarcopenia : mechanistic insights and therapeutic potential". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5287.
Pełny tekst źródłaSickle cell disease (SCD) is a genetic disorder marked by recurrent vaso-occlusive crises and progressive multi-organ damage, including kidney disease and muscle wasting, both of which worsen morbidity and reduce quality of life of affected patients. While the mechanisms underlying SCD-related kidney disease are well-established, the drivers of muscle atrophy remain incompletely understood. Emerging evidence suggests that Activin A, a member of the TGF-β superfamily, plays a significant role in both fibrosis and disease progression in kidney disease as well as muscle atrophy. However, its role in SCD-associated muscle and kidney damage has yet to be elucidated. This study investigates the role of Activin A in SCD-associated muscle wasting and kidney disease. We assessed sarcopenia prevalence and circulating Activin A levels in SCD patients and employed a murine model to analyse the temporal changes in muscle and kidney pathology as well as the involvement of Activin pathway in these pathologies. Our findings confirm that sarcopenia is prevalent among SCD patients, emphasizing the need for focused research on SCD muscle pathology. Both patient and murine models showed elevated Activin A levels in SCD, supporting the hypothesis that Activin A may contribute to kidney disease and muscle atrophy in this context. In SCD mice, ultrastructural alterations, myofiber atrophy, reduced vascularization, and impaired muscle stem cells preceded detectable kidney pathology. Pharmacological inhibition of Activin signalling pathway mitigated muscle damage and showed early signs of kidney improvement, suggesting it as a promising therapeutic target for SCD complications and patient outcomes enhancement
Leon, Florian Luis Anthony. "Role of the Nodal Signaling pathway in amphioxus neural induction". Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS151.pdf.
Pełny tekst źródłaNeural induction (NI) is the process through which pluripotent ectodermal cells are committed to a neural fate. In vertebrates, the dorsal organizer produces BMP antagonists, and other signals that induce neural cell fate. However, not much was known about NI in other chordates. Our team previously shown that the cephalochordate B. lanceolatum presents a functional organizer, and that the acquisition of epidermal fate relies on BMP activation. However, deprivation of BMP signals leads to an undifferentiated state of the ectoderm, indicating that BMP inhibition is not sufficient for NI. Moreover, FGF signal inhibition does not block NI, in the contrary to what is observed in several chordate lineages, suggesting that FGF is not the key signal to induce neural fate in amphioxus. Remarkably, activation of the Nodal/Activin pathway triggers NI and represent an instructive signal in this process in amphioxus. In this work, we have identified a group of putative non-exonic regulatory regions which are Activin-sensitive, through ATAC-seq, and searched for potential transcription factors binding sites. Our results suggest that Zinc Finger-related factors, as Klf1/2/4, might be playing crucial roles in neural development. We have also confirmed these results though comparative RNA-seq analyse at several developmental time points in embryo and ectodermal explants after Nodal activation
Saharinen, Pipsa. "Signaling through the Jak-Stat pathway : regulation of tyrosine kinase activity". Helsinki : University of Helsinki, 2002. http://ethesis.helsinki.fi/julkaisut/mat/bioti/vk/saharinen/.
Pełny tekst źródłaArngården, Linda. "Analysis of signaling pathway activity in single cells using the in situ Proximity Ligation Assay". Doctoral thesis, Uppsala universitet, Molekylära verktyg, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281716.
Pełny tekst źródłaMontgomery, Lucy Theresa. "Investigations of ABA signalling pathways in stomatal guard cells". Thesis, Lancaster University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242895.
Pełny tekst źródłaGrocott, Timothy. "Regulation of Pax6 transcriptional activity by the Smad/TGF-β signalling pathway". Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436697.
Pełny tekst źródłaGianella-Borradori, Matteo Luca. "The identification & optimisation of endogenous signalling pathway modulators". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:4c87de5d-24a7-4998-8edb-917c3922aae1.
Pełny tekst źródłaPorchet, Nicolas. "Role of signaling pathays in cell-fate specification in the early mouse embryo". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7096.
Pełny tekst źródłaDuring the early mouse embryogenesis, cell-fate specification events result in the formation of the pre-implantation blastocyst. Those events are mainly regulated by the action of signaling cascades activated upon fixation of the signaling molecules at the cell membrane. The activity of these signaling pathways allow the transcriptional regulation of a specific pool of genes responsible for cell-fate decisions and the formation of tissues. Here, I am interested in the roles of both ACTIVIN/NODAL and βCATENIN signaling pathways in the specification of cell identities during the maturation of the mouse blastocyst
Carlyle, Becky Catherine. "DISC1 & GSK3β modulate PDE4 activity : functional integration of psychiatric associated signalling pathways". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4823.
Pełny tekst źródłaKsiążki na temat "Activin signaling pathway"
Takao, Kumazawa, Kruger Lawrence i Mizumura Kazue, red. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.
Znajdź pełny tekst źródłaFleischmann, Roy. Signalling pathway inhibitors. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0081.
Pełny tekst źródłaD’Amato, Gaetano, Guillermo Luxán i José Luis de la Pompa. Defining cardiac domains from the inside: NOTCH in endocardial–myocardial interactions. Redaktorzy José Maria Pérez-Pomares, Robert G. Kelly, Maurice van den Hoff, José Luis de la Pompa, David Sedmera, Cristina Basso i Deborah Henderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198757269.003.0011.
Pełny tekst źródłaHartman, Adam L. Amino Acids in the Treatment of Neurological Disorders. Redaktor Dominic P. D’Agostino. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0035.
Pełny tekst źródłaAlves, Ines Teles, Jan Trapman i Guido Jenster. Molecular biology of prostate cancer. Redaktor James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0059.
Pełny tekst źródłaPatisaul, Heather B., i Scott M. Belcher. Receptor and Enzyme Mechanisms as Targets for Endocrine Disruptors. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0005.
Pełny tekst źródłaKühn, Wolfgang, i Gerd Walz. The molecular basis of ciliopathies and cyst formation. Redaktor Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0303.
Pełny tekst źródłaLories, Rik J., i Georg Schett. Pathology: bone. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198734444.003.0010.
Pełny tekst źródłaNoebels, Jeffrey L., Massimo Avoli, Michael A. Rogawski, Annamaria Vezzani i Antonio V. Delgado-Escueta, red. Jasper's Basic Mechanisms of the Epilepsies. Wyd. 5. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.001.0001.
Pełny tekst źródłaVostral, Sharra L. Toxic Shock. NYU Press, 2018. http://dx.doi.org/10.18574/nyu/9781479877843.001.0001.
Pełny tekst źródłaCzęści książek na temat "Activin signaling pathway"
Scheper, Gert C., Roel Van Wijk i Adri A. M. Thomas. "Regulation of the Activity of Eukaryotic Initiation Factors in Stressed Cells". W Signaling Pathways for Translation, 39–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-09889-9_2.
Pełny tekst źródłaWatabe, Tetsuro, Albert F. Candia i Ken W. Y. Cho. "Activin Signaling Pathways and Their Role in Xenopus Mesoderm Formation". W Inhibin, Activin and Follistatin, 244–53. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1874-6_23.
Pełny tekst źródłaSteffen, Anika, Theresia E. B. Stradal i Klemens Rottner. "Signalling Pathways Controlling Cellular Actin Organization". W The Actin Cytoskeleton, 153–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/164_2016_35.
Pełny tekst źródłaGoldstein, Barry J., Faiyaz Ahmad, Wendi Ding, Pei-Ming Li i Wei-Ren Zhang. "Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases". W Insulin Action, 91–99. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5647-3_10.
Pełny tekst źródłaSchuller, Hildegard M. "Neurotransmitter Receptor-Mediated Signaling Pathways as Modulators of Carcinogenesis". W Neuronal Activity in Tumor Tissue, 45–63. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000100045.
Pełny tekst źródłaTanner, Matthew J., Elina Levina, Michael Shtutman, Mengqian Chen, Patrice Ohouo i Ralph Buttyan. "Unique Effects of Wnt Signaling on Prostate Cancer Cells: Modulation of the Androgen Signaling Pathway by Interactions of the Androgen Receptor Gene and Protein with Key Components of the Canonical Wnt Signaling Pathway". W Androgen Action in Prostate Cancer, 569–86. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69179-4_24.
Pełny tekst źródłaSanders, Dale, Gethyn J. Allen, Shelagh R. Muir i Stephen K. Roberts. "Integration of Ion Channel Activity in Calcium Signalling Pathways". W Cellular Integration of Signalling Pathways in Plant Development, 47–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72117-5_5.
Pełny tekst źródłaOtto, C., S. Wessler i K. H. Fritzemeier. "Exploiting Nongenomic Estrogen Receptor-Mediated Signaling for the Development of Pathway-Selective Estrogen Receptor Ligands". W Tissue-Specific Estrogen Action, 163–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/2789_2006_022.
Pełny tekst źródłaFantus, I. George, i Evangelia Tsiani. "Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects". W Insulin Action, 109–19. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5647-3_12.
Pełny tekst źródłaRazani, Bahram, Arash Shahangian, Beichu Guo i Genhong Cheng. "Biological Impact of Type I Interferon Induction Pathways beyond Their Antivirus Activity". W Cellular Signaling and Innate Immune Responses to RNA Virus Infections, 155–75. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815561.ch11.
Pełny tekst źródłaStreszczenia konferencji na temat "Activin signaling pathway"
Qiu, Wanglong, Sophia Tang, Sohyae Lee, Andrew T. Turk, Anthony Sireci, Anne Qiu, Ralph H. Hruban, Helen E. Remotti i Gloria H. Su. "Abstract 2735: Inactivation of activin signaling pathway accelerates the development of pancreatic intraductal papillary mucinous neoplasms in vivo." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2735.
Pełny tekst źródłaParchaykina, M. V., I. D. Molchanov, E. V. Chudaikina, T. P. Kuzmenko, E. S. Revina, A. V. Zavarykina, M. A. Simakova i V. V. Revin. "THE ROLE OF LIPID METABOLITES IN THE REGULATION OF REGENERATIVE PROCESSES IN DAMAGED SOMATIC NERVES". W XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-266.
Pełny tekst źródłaDereli-Korkut, Zeynep, i Sihong Wang. "Microfluidic Cell Arrays to Mimic 3D Tissue Microenvironment". W ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80411.
Pełny tekst źródłaPenninger, Charles L., Andre´s Tovar, Glen L. Niebur i John E. Renaud. "Signaling Pathways for Bone Resorption Predicted as a Hybrid Cellular Automaton Process". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39358.
Pełny tekst źródłaJoiner, Danese M., Bryan T. MacDonald, Xi He, Peter V. Hauschka i Steven A. Goldstein. "Reduction of the Wnt Inhibitor Dkk1 Correlates With Improved Bone Mechanical and Morphological Properties in Mice". W ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175478.
Pełny tekst źródłaParchaykina, M. V., T. P. Kuzmenko, E. P. Popkov, A. V. Zavarykina, N. E. Arzhanov i V. V. Revin. "STUDY OF THE EFFECT OF CLOBETASOL ON CHANGES IN THE CONTENT OF NERVE GROWTH FACTOR AND THE FUNCTIONAL ACTIVITY OF DAMAGED SOMATIC NERVES". W X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-202.
Pełny tekst źródłaParkins, Sharon, Lisa c. Green, Sarah Anthony, Adrienne R. Guarnieri, Shannon M. Shearer, Onur Kanisicak, Albert P. Owens i Michael Tranter. "Wnt1-Inducible Signaling Pathway Protein-1 (WISP1) Modulation of Cardiac Fibroblasts Activity". W ASPET 2024 Annual Meeting Abstract. American Society for Pharmacology and Experimental Therapeutics, 2024. http://dx.doi.org/10.1124/jpet.269.989080.
Pełny tekst źródłaAsyakina, A. S., i K. I. Melkonyan. "THE ROLE OF THE MATRICELLULAR PROTEIN PERIOSTIN ON THE EFFICIENCY OF CULTURING MAMMALIAN CELLS". W XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-298.
Pełny tekst źródłaErickson, Geoffrey R., i Farshid Guilak. "Osmotic Stress Initiates Intracellular Calcium Waves in Chondrocytes Through Extracellular Influx and the Inositol Phosphate Pathway". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0580.
Pełny tekst źródłaWarren, Janine S. A., Emily Norton i John M. Lamar. "Abstract A41: Inhibition of aberrant YAP and TAZ activity to prevent metastasis formation and growth". W Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a41.
Pełny tekst źródłaRaporty organizacyjne na temat "Activin signaling pathway"
Yompakdee, Chulee, i Warintorn Chavasiri. An active compound Kempferia parviflora with inhibitory activity against GSK-3 kinase implicated in type II Diabetes and Alzheimer's disease. Chulalongkorn University, 2015. https://doi.org/10.58837/chula.res.2015.37.
Pełny tekst źródłaFriedman, Haya, Julia Vrebalov i James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, październik 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Pełny tekst źródłaLi, Shaoguang. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia. Fort Belvoir, VA: Defense Technical Information Center, luty 2007. http://dx.doi.org/10.21236/ada468056.
Pełny tekst źródłaLi, Shaoguang. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia. Fort Belvoir, VA: Defense Technical Information Center, luty 2008. http://dx.doi.org/10.21236/ada482344.
Pełny tekst źródłaBarash, Itamar, i Robert Rhoads. Translational Mechanisms Governing Milk Protein Levels and Composition. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7696526.bard.
Pełny tekst źródłaYi, Ping. The Regulation of Nuclear Receptor Coactivator SRC-3 Activity Through Membrane Receptor Mediated Signaling Pathways. Fort Belvoir, VA: Defense Technical Information Center, maj 2005. http://dx.doi.org/10.21236/ada460836.
Pełny tekst źródłaMoran, Nava, Richard Crain i Wolf-Dieter Reiter. Regulation by Light of Plant Potassium Uptake through K Channels: Biochemical, Physiological and Biophysical Study. United States Department of Agriculture, wrzesień 1995. http://dx.doi.org/10.32747/1995.7571356.bard.
Pełny tekst źródłaOlszewski, Neil, i David Weiss. Role of Serine/Threonine O-GlcNAc Modifications in Signaling Networks. United States Department of Agriculture, wrzesień 2010. http://dx.doi.org/10.32747/2010.7696544.bard.
Pełny tekst źródłaChamovitz, A. Daniel, i Georg Jander. Genetic and biochemical analysis of glucosinolate breakdown: The effects of indole-3-carbinol on plant physiology and development. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7597917.bard.
Pełny tekst źródłaBromberg, Michael. Targeting the Tissue Factor-Factor VIIa Signaling Pathway to Enhance Activity of mTOR Inhibitors in the Treatment of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2009. http://dx.doi.org/10.21236/ada526533.
Pełny tekst źródła