Gotowa bibliografia na temat „Aliev-Panfilov model”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aliev-Panfilov model”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Aliev-Panfilov model"

1

Grigoriev, Michael, and Nikita V. Turushev. "Computer Simulation of Cardiac Electrical Activity Using an Electrocardiograph on Nanosensors." Advanced Materials Research 1040 (September 2014): 928–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.928.

Pełny tekst źródła
Streszczenie:
The problems related to cardiovascular diseases are considered. The method to solve some of the problems has been proposed. We also consider a two-component Aliev-Panfilov model and the algorithm of the hardware-software complexes. The obtained results are presented.
Style APA, Harvard, Vancouver, ISO itp.
2

Sakaguchi, Hidetsugu, and Yasuhiro Nakamura. "Elimination of Breathing Spiral Waves in the Aliev–Panfilov Model." Journal of the Physical Society of Japan 79, no. 7 (2010): 074802. http://dx.doi.org/10.1143/jpsj.79.074802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zemlyanukhin, A. I., and A. V. Bochkarev. "Analytical properties and exact solution of the Aliev-Panfilov model." Journal of Physics: Conference Series 1205 (April 2019): 012060. http://dx.doi.org/10.1088/1742-6596/1205/1/012060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Beheshti, M., F. H. Foomany, K. Magtibay, et al. "Modeling Current Density Maps Using Aliev–Panfilov Electrophysiological Heart Model." Cardiovascular Engineering and Technology 7, no. 3 (2016): 238–53. http://dx.doi.org/10.1007/s13239-016-0271-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pavel’chak, I. A., and S. R. Tuikina. "Numerical solution of an inverse problem for the modified aliev–panfilov model." Computational Mathematics and Modeling 24, no. 1 (2013): 14–21. http://dx.doi.org/10.1007/s10598-013-9155-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Moskalenko, Andrey Vitalievich, and Sergey Aleksandrovich Makhortykh. "Bifurcation spot on the parametric portrait of the two-dimensional version of the Aliev—Panfilov model." Keldysh Institute Preprints, no. 61 (2024): 1–44. http://dx.doi.org/10.20948/prepr-2024-61.

Pełny tekst źródła
Streszczenie:
For the first time, a parametric portrait of a two-dimensional version of the Aliev—Panfilov model is presented, indicating the position of the bifurcation boundary and the bifurcation spot on it. The difference between this model and the "classical" models of autowave processes is demonstrated. Some special cases of the behavior of an autowave vortex are presented, which have not been described in the scientific literature before. The publication is intended primarily for specialists in the fields of mathematical biology, mathematical physics of biological objects and biophysics.
Style APA, Harvard, Vancouver, ISO itp.
7

Sakaguchi, Hidetsugu, and Yusuke Kido. "Suppression of Spiral Chaos by a Guiding Network in the Aliev-Panfilov Model." Progress of Theoretical Physics Supplement 161 (2006): 332–35. http://dx.doi.org/10.1143/ptps.161.332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Seyedebrahimi, M. Mehdi, and Yesim Serinagaoglu. "Simulation of Transmembrane Potential Propagation in Normal and Ischemic Tissue Using Aliev-Panfilov Model." International Journal of Bioscience, Biochemistry and Bioinformatics 7, no. 1 (2017): 13–19. http://dx.doi.org/10.17706/ijbbb.2017.7.1.13-19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ihab ELAFF. "Modeling of the excitation propagation of the human heart." World Journal of Biology Pharmacy and Health Sciences 22, no. 2 (2025): 512–19. https://doi.org/10.30574/wjbphs.2025.22.2.0541.

Pełny tekst źródła
Streszczenie:
This study presents a computational model for simulating excitation propagation in the human heart using a Monodomain reaction-diffusion framework coupled with the Aliev-Panfilov model for the ionic reaction term. The objective is to address the Forward Problem in cardiac electrophysiology by modeling how electrical activation initiated at the conduction system propagates through the myocardium. Cellular and tissue-level dynamics are integrated using diffusion tensor imaging (DTI)-derived anisotropy and conduction network structures. Two conduction system models are evaluated, one based on tra
Style APA, Harvard, Vancouver, ISO itp.
10

Pongui Ngoma, D. V., V. D. Mabonzo, L. J. P. Gomat, G. Nguimbi, and B. B. Bamvi Madzou. "PARAMETER IDENTIFICATION PROBLEM TO FIND THE CARDIAC POTENTIAL WAVE FORM IN IONIC MODELS." Advances in Mathematics: Scientific Journal 11, no. 11 (2022): 991–1017. http://dx.doi.org/10.37418/amsj.11.11.2.

Pełny tekst źródła
Streszczenie:
In this paper, we have defined an optimization problem allowing to directly find the shape of the cardiac wave of some ionic models. This allowed us to compare some of these ionic models via a parameter identification problem instead of comparing them directly by plotting the graphs for given values of the parameters. Compared to the empirical methods used to adjust one or two parameters at a time encountered in electrophysiology, we believe that our parameter identification approach is reliable and able to simultaneously identify four to eleven parameters of an ionic model. Using this approac
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Aliev-Panfilov model"

1

Rajany, K. V. "Numerical Studies of Spiral- and Scroll-wave Dynamics in Cardiac Tissue: (1) Spiral- and Scroll-Wave Turbulence; (2) Spiral- and Scroll-Wave dynamics in Anatomically and Physiologically realistic Mathematical Models for Canine and Human Ventricular Tissue." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5000.

Pełny tekst źródła
Streszczenie:
A summary of the main results of our studies is given below. In most of our work, we use three mathematical models for cardiac myocytes, namely, the Panfilov model, the Aliev-Panfilov model, and the Hund-Rudy-Dynamic (HRD) canine-ventricular model for our simulations. The first two are two-variable models; the HRD model is a realistic multi-variable complicated model with 45 variables; in a few cases we also employ the TP06 human-ventricular model. The equations for the first two models are given in Chapter 2. The full descriptions of the HRD model and the TP06 model equations are give
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Aliev-Panfilov model"

1

Son, Jeongeun, Yuncheng Du, and Dongping Du. "Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513608.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Das, Sampad, Nasrin Sultana, Md Ariful Islam Arif, and M. Osman Gani. "Bifurcation analysis of periodic action potentials of cardiac excitation in the Aliev-Panfilov model." In 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec). IEEE, 2016. http://dx.doi.org/10.1109/meditec.2016.7835378.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wong, Jonathan, Serdar Göktepe, and Ellen Kuhl. "Computational Simulation of Traveling Arrhythmic Waves in Myocardial Tissue." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206552.

Pełny tekst źródła
Streszczenie:
Cardiac arrhythmias are common cardiac disorders characterized by irregular electrical activity of the heart. Each year in the United States alone, about half a million deaths and 835,000 hospital discharges result from arrhythmias. In fact, atrial fibrillation is responsible for 15–20% of all ischemic strokes [1]. Due to the complexity of the electrical conduction pathways in myocardium, computational models are useful platforms for gaining insight into the origin of arrhythmias, as well as the development of corrective options. For these purposes, a quantitative finite element model based on
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!