Gotowa bibliografia na temat „Almost pseudo Ricci symmetric manifold”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Almost pseudo Ricci symmetric manifold”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Almost pseudo Ricci symmetric manifold"

1

Velimirović, Ljubica, Pradip Majhi, and Uday Chand De. "Almost pseudo-Q-symmetric semi-Riemannian manifolds." International Journal of Geometric Methods in Modern Physics 15, no. 07 (2018): 1850117. http://dx.doi.org/10.1142/s0219887818501177.

Pełny tekst źródła
Streszczenie:
The object of the present paper is to study almost pseudo-[Formula: see text]-symmetric manifolds [Formula: see text]. Some geometric properties have been studied which recover some known results of pseudo [Formula: see text]-symmetric manifolds. We obtain a necessary and sufficient condition for the [Formula: see text]-curvature tensor to be recurrent in [Formula: see text]. Also, we provide several interesting results. Among others, we prove that a Ricci symmetric [Formula: see text] is an Einstein manifold under certain condition. Moreover we deal with [Formula: see text]-flat perfect fluid
Style APA, Harvard, Vancouver, ISO itp.
2

Acet, T. "$\delta$-Almost Ricci soliton on 3-dimensional trans-Sasakian manifold." Carpathian Mathematical Publications 16, no. 2 (2024): 558–64. https://doi.org/10.15330/cmp.16.2.558-564.

Pełny tekst źródła
Streszczenie:
In this paper, we consider $\delta$-almost Ricci soliton on 3-dimensional trans-Sasakian manifold admitting $\eta$-parallel Ricci tensor. We give some conditions for $P\cdot \phi =0$, $P\cdot S=0$, $Q\cdot P=0$. Also, we show that there is almost pseudo symmetric $\delta$-almost Ricci soliton on 3-dimensional trans-Sasakian manifold admitting cyclic Ricci tensor. Finally, we give an example for verifying the obtained results.
Style APA, Harvard, Vancouver, ISO itp.
3

Yadav, Sunil Kumar, Abdul Haseeb, and Nargis Jamal. "Almost Pseudo Symmetric Kähler Manifolds Admitting Conformal Ricci-Yamabe Metric." International Journal of Analysis and Applications 21 (September 25, 2023): 103. http://dx.doi.org/10.28924/2291-8639-21-2023-103.

Pełny tekst źródła
Streszczenie:
The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.
Style APA, Harvard, Vancouver, ISO itp.
4

Ali, Mohabbat, and Mohd Vasiulla. "Almost Pseudo Ricci Symmetric Manifold Admitting Schouten Tensor." Journal of Dynamical Systems and Geometric Theories 19, no. 2 (2021): 217–25. http://dx.doi.org/10.1080/1726037x.2021.2020422.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pahan, Sampa. "On h-almost conformal η-Ricci-Bourguignon soliton in a perfect fluid spacetime". Acta et Commentationes Universitatis Tartuensis de Mathematica 28, № 1 (2024): 75–97. http://dx.doi.org/10.12697/acutm.2024.28.06.

Pełny tekst źródła
Streszczenie:
The primary object of the paper is to study h-almost conformal η-Ricci-Bourguignon soliton in an almost pseudo-symmetric Lorentzian Kähler spacetime manifold when some different curvature tensors vanish identically. We have also explored the conditions under which an h-almost conformal Ricci-Bourguignon soliton is steady, shrinking or expanding in different perfect fluids such as stiff matter, dust fluid, dark fluid and radiation fluid. We have observed in a perfect fluid spacetime with h-almost conformal η-Ricci-Bourguignon soliton to be a manifold of constant Riemannian curvature under some
Style APA, Harvard, Vancouver, ISO itp.
6

De, U. C., and Dibakar Dey. "Pseudo-symmetric structures on almost Kenmotsu manifolds with nullity distributions." Acta et Commentationes Universitatis Tartuensis de Mathematica 23, no. 1 (2019): 13–24. http://dx.doi.org/10.12697/acutm.2019.23.02.

Pełny tekst źródła
Streszczenie:
The object of the present paper is to characterize Ricci pseudosymmetric and Ricci semisymmetric almost Kenmotsu manifolds with (k; μ)-, (k; μ)′-, and generalized (k; μ)-nullity distributions. We also characterize (k; μ)-almost Kenmotsu manifolds satisfying the condition R ⋅ S = LꜱQ(g; S2).
Style APA, Harvard, Vancouver, ISO itp.
7

DE, UDAY CHAND, and PRAJJWAL PAL. "On some classes of almost pseudo Ricci symmetric manifolds." Publicationes Mathematicae Debrecen 83, no. 1-2 (2013): 207–25. http://dx.doi.org/10.5486/pmd.2013.5675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Baḡdatlı Yılmaz, Hülya, та S. Aynur Uysal. "Compatibility of φ(Ric)-vector fields on almost pseudo-Ricci symmetric manifolds". International Journal of Geometric Methods in Modern Physics 18, № 08 (2021): 2150128. http://dx.doi.org/10.1142/s0219887821501280.

Pełny tekst źródła
Streszczenie:
The object of the paper is to study the compatibility of [Formula: see text]-vector fields on almost pseudo-Ricci symmetric manifolds, briefly [Formula: see text]. First, we show the existence of an [Formula: see text] whose basic vector field [Formula: see text] is a [Formula: see text]-vector field by constructing a non-trivial example. Then, we investigate the properties of the Riemann and Weyl compatibility of [Formula: see text] under certain conditions. We consider an [Formula: see text] space-time whose basic vector fields [Formula: see text] and [Formula: see text] is [Formula: see tex
Style APA, Harvard, Vancouver, ISO itp.
9

Duggal, K. L. "A New Class of Contact Pseudo Framed Manifolds with Applications." International Journal of Mathematics and Mathematical Sciences 2021 (August 26, 2021): 1–9. http://dx.doi.org/10.1155/2021/6141587.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce a new class of contact pseudo framed (CPF)-manifolds M , g , f , λ , ξ by a real tensor field f of type 1,1 , a real function λ such that f 3 = λ 2 f where ξ is its characteristic vector field. We prove in our main Theorem 2 that M admits a closed 2-form Ω if λ is constant. In 1976, Blair proved that the vector field ξ of a normal contact manifold is Killing. Contrary to this, we have shown in Theorem 2 that, in general, ξ of a normal CPF-manifold is non-Killing. We also have established a link of CPF-hypersurfaces with curvature, affine, conformal collineations sym
Style APA, Harvard, Vancouver, ISO itp.
10

Blaga, Adara M. "Differentiable Manifolds and Geometric Structures." Mathematics 13, no. 7 (2025): 1082. https://doi.org/10.3390/math13071082.

Pełny tekst źródła
Streszczenie:
This editorial presents 26 research articles published in the Special Issue entitled Differentiable Manifolds and Geometric Structures of the MDPI Mathematics journal, which covers a wide range of topics particularly from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the latest achievements in different areas of differential geometry, among which is counted: the geometry of differentiable manifolds with curvature restrictions such as Golden space forms, Sasakian space forms; diffeological and affine connection spaces; Weingarten and Delaunay surfaces;
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!