Artykuły w czasopismach na temat „Analysis of encrypted network flow”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Analysis of encrypted network flow”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yan, Xiaodan. "Deep Learning-Based Efficient Analysis for Encrypted Traffic." Applied Sciences 13, no. 21 (2023): 11776. http://dx.doi.org/10.3390/app132111776.
Pełny tekst źródłaJiang, Ziyu. "Bidirectional Flow-Based Image Representation Method for Detecting Network Traffic Service Categories." Highlights in Science, Engineering and Technology 85 (March 13, 2024): 89–95. http://dx.doi.org/10.54097/mwyge502.
Pełny tekst źródłaMa, Chencheng, Xuehui Du, and Lifeng Cao. "Improved KNN Algorithm for Fine-Grained Classification of Encrypted Network Flow." Electronics 9, no. 2 (2020): 324. http://dx.doi.org/10.3390/electronics9020324.
Pełny tekst źródłaMeghdouri, Fares, Tanja Zseby, and Félix Iglesias. "Analysis of Lightweight Feature Vectors for Attack Detection in Network Traffic." Applied Sciences 8, no. 11 (2018): 2196. http://dx.doi.org/10.3390/app8112196.
Pełny tekst źródłaAfzal, Asmara, Mehdi Hussain, Shahzad Saleem, M. Khuram Shahzad, Anthony T. S. Ho, and Ki-Hyun Jung. "Encrypted Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal Messenger App." Applied Sciences 11, no. 17 (2021): 7789. http://dx.doi.org/10.3390/app11177789.
Pełny tekst źródłaRavi, V., and A. S. Poornima. "SecMa: A Novel Multimodal Autoencoder Framework for Encrypted IoT Traffic Analysis and Attack Detection." Engineering, Technology & Applied Science Research 15, no. 3 (2025): 23020–26. https://doi.org/10.48084/etasr.10336.
Pełny tekst źródłaOh, Chaeyeon, Joonseo Ha, and Heejun Roh. "A Survey on TLS-Encrypted Malware Network Traffic Analysis Applicable to Security Operations Centers." Applied Sciences 12, no. 1 (2021): 155. http://dx.doi.org/10.3390/app12010155.
Pełny tekst źródłaHaywood, Gregor Tamati, and Saleem Noel Bhatti. "Defence against Side-Channel Attacks for Encrypted Network Communication Using Multiple Paths." Cryptography 8, no. 2 (2024): 22. http://dx.doi.org/10.3390/cryptography8020022.
Pełny tekst źródłaHu, Xinyi, Chunxiang Gu, Yihang Chen, and Fushan Wei. "CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method." Sensors 21, no. 24 (2021): 8231. http://dx.doi.org/10.3390/s21248231.
Pełny tekst źródłaVizitiu, Anamaria, Cosmin-Ioan Nita, Radu Miron Toev, Tudor Suditu, Constantin Suciu, and Lucian Mihai Itu. "Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection." Applied Sciences 11, no. 19 (2021): 9049. http://dx.doi.org/10.3390/app11199049.
Pełny tekst źródłaChoudhary, Swapna, and Sanjay Dorle. "Secured SDN Based Blockchain: An Architecture to Improve the Security of VANET." International journal of electrical and computer engineering systems 13, no. 2 (2022): 145–53. http://dx.doi.org/10.32985/ijeces.13.2.7.
Pełny tekst źródłaDemertzis, Konstantinos, Panayiotis Kikiras, Nikos Tziritas, Salvador Sanchez, and Lazaros Iliadis. "The Next Generation Cognitive Security Operations Center: Network Flow Forensics Using Cybersecurity Intelligence." Big Data and Cognitive Computing 2, no. 4 (2018): 35. http://dx.doi.org/10.3390/bdcc2040035.
Pełny tekst źródłaPettorru, Giovanni, Matteo Flumini, and Marco Martalò. "Balancing Complexity and Performance in Convolutional Neural Network Models for QUIC Traffic Classification." Sensors 25, no. 15 (2025): 4576. https://doi.org/10.3390/s25154576.
Pełny tekst źródłaE.B., Adigun, Ismaila W.O., Baale A.A., and Ismaila F.M. "Optimized DenseNet Architecture for Efficient Classification of Encrypted Internet Traffic." Asian Journal of Research in Computer Science 18, no. 2 (2025): 197–205. https://doi.org/10.9734/ajrcos/2025/v18i2571.
Pełny tekst źródłaLienkov, S. V., V. M. Dzhuliy, and I. V. Muliar. "METHOD OF CLASSIFICATION OF PSEUDO-RANDOM SEQUENCES OF COMPRESSED AND ENCRYPTED DATA TO PREVENT INFORMATION LEAKAGE." Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, no. 82 (2024): 77–93. http://dx.doi.org/10.17721/2519-481x/2024/82-09.
Pełny tekst źródłaHe, Gaofeng, Bingfeng Xu, and Haiting Zhu. "AppFA: A Novel Approach to Detect Malicious Android Applications on the Network." Security and Communication Networks 2018 (April 17, 2018): 1–15. http://dx.doi.org/10.1155/2018/2854728.
Pełny tekst źródłaZhang, Haozhen, Haodong Yue, Xi Xiao, et al. "Revolutionizing Encrypted Traffic Classification with MH-Net: A Multi-View Heterogeneous Graph Model." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 1048–56. https://doi.org/10.1609/aaai.v39i1.32091.
Pełny tekst źródłaRen, Guoqiang, Guang Cheng, and Nan Fu. "Accurate Encrypted Malicious Traffic Identification via Traffic Interaction Pattern Using Graph Convolutional Network." Applied Sciences 13, no. 3 (2023): 1483. http://dx.doi.org/10.3390/app13031483.
Pełny tekst źródłaSubach, Ihor, Dmytro Sharadkin, and Ihor Yakoviv. "APPLICATION OF METRIC METHODS OF HISTOGRAM COMPARISON FOR DETECTING CHANGES IN ENCRYPTED NETWORK TRAFFIC." Cybersecurity: Education, Science, Technique 1, no. 25 (2024): 434–48. http://dx.doi.org/10.28925/2663-4023.2024.25.434448.
Pełny tekst źródłaLapshichyov, Vitaly, and Oleg Makarevich. "Identification of the "Tor" Network https-Connection Version tls v1.3." Voprosy kiberbezopasnosti, no. 6(40) (2020): 57–62. http://dx.doi.org/10.21681/2311-3456-2020-06-57-62.
Pełny tekst źródłaChaddad, Louma, Ali Chehab, Imad H. Elhajj, and Ayman Kayssi. "Optimal Packet Camouflage Against Traffic Analysis." ACM Transactions on Privacy and Security 24, no. 3 (2021): 1–23. http://dx.doi.org/10.1145/3442697.
Pełny tekst źródłaSelvaraj, Prabha, Vijay Kumar Burugari, S. Gopikrishnan, Abdullah Alourani , Gautam Srivastava, and Mohamed Baza. "An Enhanced and Secure Trust-Aware Improved GSO for Encrypted Data Sharing in the Internet of Things." Applied Sciences 13, no. 2 (2023): 831. http://dx.doi.org/10.3390/app13020831.
Pełny tekst źródłaSingh, Purushottam, Sandip Dutta, and Prashant Pranav. "Optimizing GANs for Cryptography: The Role and Impact of Activation Functions in Neural Layers Assessing the Cryptographic Strength." Applied Sciences 14, no. 6 (2024): 2379. http://dx.doi.org/10.3390/app14062379.
Pełny tekst źródłaSudhanshu, Sekhar Tripathy, and Behera Bichitrananda. "EVALUATION OF FUTURE PERSPECTIVES ON SNORT AND WIRESHARK AS TOOLS AND TECHNIQUES FOR INTRUSION DETECTION SYSTEM." Industrial Engineering Journal 53, no. 10 (2024): 18–40. https://doi.org/10.5281/zenodo.14213834.
Pełny tekst źródłaWang, Wei, Cheng Sheng Sun, and Jia Ning Ye. "A Method for TLS Malicious Traffic Identification Based on Machine Learning." Advances in Science and Technology 105 (April 2021): 291–301. http://dx.doi.org/10.4028/www.scientific.net/ast.105.291.
Pełny tekst źródłaSalim, Mikail Mohammed, Inyeung Kim, Umarov Doniyor, Changhoon Lee, and Jong Hyuk Park. "Homomorphic Encryption Based Privacy-Preservation for IoMT." Applied Sciences 11, no. 18 (2021): 8757. http://dx.doi.org/10.3390/app11188757.
Pełny tekst źródłaLi, Mengyao, Xianwen Fang, and Asimeng Ernest. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition." Mathematics 11, no. 15 (2023): 3274. http://dx.doi.org/10.3390/math11153274.
Pełny tekst źródłaGao, Shu-Yang, Xiao-Hong Li, and Mao-De Ma. "A Malicious Behavior Awareness and Defense Countermeasure Based on LoRaWAN Protocol." Sensors 19, no. 23 (2019): 5122. http://dx.doi.org/10.3390/s19235122.
Pełny tekst źródłaChen, Xu-Yang, Lu Han, De-Chuan Zhan, and Han-Jia Ye. "MIETT: Multi-Instance Encrypted Traffic Transformer for Encrypted Traffic Classification." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 15922–29. https://doi.org/10.1609/aaai.v39i15.33748.
Pełny tekst źródłaSattar, Kanza Abdul, Takreem Haider, Umar Hayat, and Miguel D. Bustamante. "An Efficient and Secure Cryptographic Algorithm Using Elliptic Curves and Max-Plus Algebra-Based Wavelet Transform." Applied Sciences 13, no. 14 (2023): 8385. http://dx.doi.org/10.3390/app13148385.
Pełny tekst źródłaPachilakis, Michalis, Panagiotis Papadopoulos, Nikolaos Laoutaris, Evangelos P. Markatos, and Nicolas Kourtellis. "YourAdvalue." ACM SIGMETRICS Performance Evaluation Review 50, no. 1 (2022): 41–42. http://dx.doi.org/10.1145/3547353.3522629.
Pełny tekst źródłaPachilakis, Michalis, Panagiotis Papadopoulos, Nikolaos Laoutaris, Evangelos P. Markatos, and Nicolas Kourtellis. "YourAdvalue: Measuring Advertising Price Dynamics without Bankrupting User Privacy." Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, no. 3 (2021): 1–26. http://dx.doi.org/10.1145/3491044.
Pełny tekst źródłaWang, Guanyu, and Yijun Gu. "Multi-Task Scenario Encrypted Traffic Classification and Parameter Analysis." Sensors 24, no. 10 (2024): 3078. http://dx.doi.org/10.3390/s24103078.
Pełny tekst źródłaLi, Minghui, Zhendong Wu, Keming Chen, and Wenhai Wang. "Adversarial Malicious Encrypted Traffic Detection Based on Refined Session Analysis." Symmetry 14, no. 11 (2022): 2329. http://dx.doi.org/10.3390/sym14112329.
Pełny tekst źródłaAlwhbi, Ibrahim A., Cliff C. Zou, and Reem N. Alharbi. "Encrypted Network Traffic Analysis and Classification Utilizing Machine Learning." Sensors 24, no. 11 (2024): 3509. http://dx.doi.org/10.3390/s24113509.
Pełny tekst źródłaJung, In-Su, Yu-Rae Song, Lelisa Adeba Jilcha, et al. "Enhanced Encrypted Traffic Analysis Leveraging Graph Neural Networks and Optimized Feature Dimensionality Reduction." Symmetry 16, no. 6 (2024): 733. http://dx.doi.org/10.3390/sym16060733.
Pełny tekst źródłaCao, Jie, Xing-Liang Yuan, Ying Cui, Jia-Cheng Fan, and Chin-Ling Chen. "A VPN-Encrypted Traffic Identification Method Based on Ensemble Learning." Applied Sciences 12, no. 13 (2022): 6434. http://dx.doi.org/10.3390/app12136434.
Pełny tekst źródłaSharma M, Prof Sahana. "Encrypted Flow Intelligence: A Literature Review of AI Models for Traffic-Based Threat Detection." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47998.
Pełny tekst źródłaFarooq, Irfan, Syed Aale Ahmed, Asfar Ali, Muhammad Ali Warraich, Muhammad Aqeel, and Hamayun Khan. "Enhanced Classification of Networks Encrypted Traffic: A Conceptual Analysis of Security Assessments, Implementation, Trends and Future Directions." Asian Bulletin of Big Data Management 4, no. 4 (2024): 500–522. https://doi.org/10.62019/abbdm.v4i4.287.
Pełny tekst źródłaSivaranjani, Dr R. "Extensible Machine Learning for Encrypted Network Traffic." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 2214–21. https://doi.org/10.22214/ijraset.2025.67793.
Pełny tekst źródłaPathmaperuma, Madushi H., Yogachandran Rahulamathavan, Safak Dogan, and Ahmet Kondoz. "CNN for User Activity Detection Using Encrypted In-App Mobile Data." Future Internet 14, no. 2 (2022): 67. http://dx.doi.org/10.3390/fi14020067.
Pełny tekst źródłaJeng, Tzung-Han, Wen-Yang Luo, Chuan-Chiang Huang, Chien-Chih Chen, Kuang-Hung Chang, and Yi-Ming Chen. "Cloud Computing for Malicious Encrypted Traffic Analysis and Collaboration." International Journal of Grid and High Performance Computing 13, no. 3 (2021): 12–29. http://dx.doi.org/10.4018/ijghpc.2021070102.
Pełny tekst źródłaZheng, Juan, Zhiyong Zeng, and Tao Feng. "GCN-ETA: High-Efficiency Encrypted Malicious Traffic Detection." Security and Communication Networks 2022 (January 22, 2022): 1–11. http://dx.doi.org/10.1155/2022/4274139.
Pełny tekst źródłaQiu, Xiaozong, Guohua Yan, and Lihua Yin. "CLSTM-MT (a Combination of 2-Conv CNN and BiLSTM Under the Mean Teacher Collaborative Learning Framework): Encryption Traffic Classification Based on CLSTM (a Combination of 2-Conv CNN and BiLSTM) and Mean Teacher Collaborative Learning." Applied Sciences 15, no. 9 (2025): 5089. https://doi.org/10.3390/app15095089.
Pełny tekst źródłaTaylor, Vincent F., Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. "Robust Smartphone App Identification via Encrypted Network Traffic Analysis." IEEE Transactions on Information Forensics and Security 13, no. 1 (2018): 63–78. http://dx.doi.org/10.1109/tifs.2017.2737970.
Pełny tekst źródłaKaraçay, Leyli, Erkay Savaş, and Halit Alptekin. "Intrusion Detection Over Encrypted Network Data." Computer Journal 63, no. 4 (2019): 604–19. http://dx.doi.org/10.1093/comjnl/bxz111.
Pełny tekst źródłaFischer, Andreas, Benny Fuhry, Jörn Kußmaul, Jonas Janneck, Florian Kerschbaum, and Eric Bodden. "Computation on Encrypted Data Using Dataflow Authentication." ACM Transactions on Privacy and Security 25, no. 3 (2022): 1–36. http://dx.doi.org/10.1145/3513005.
Pełny tekst źródłaYang, Xiaoqing, Niwat Angkawisittpan, and Xinyue Feng. "Analysis of an enhanced random forest algorithm for identifying encrypted network traffic." EUREKA: Physics and Engineering, no. 5 (September 10, 2024): 201–12. http://dx.doi.org/10.21303/2461-4262.2024.003372.
Pełny tekst źródłaXu, Guoliang, Ming Xu, Yunzhi Chen, and Jiaqi Zhao. "A Mobile Application-Classifying Method Based on a Graph Attention Network from Encrypted Network Traffic." Electronics 12, no. 10 (2023): 2313. http://dx.doi.org/10.3390/electronics12102313.
Pełny tekst źródłaDai, Xianlong, Guang Cheng, Ziyang Yu, Ruixing Zhu, and Yali Yuan. "MSLCFinder: An Algorithm in Limited Resources Environment for Finding Top-k Elephant Flows." Applied Sciences 13, no. 1 (2022): 575. http://dx.doi.org/10.3390/app13010575.
Pełny tekst źródła